【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
【答案】(1)88(2)月租金定為4 050元時(shí),月收益最大,其值為307 050元
【解析】試題分析:(Ⅰ)當(dāng)每輛車的月租金為x元時(shí),租出的車輛(輛),把x=3600代入計(jì)算;
(Ⅱ)設(shè)每輛車的月租金為x元,租賃公司的月收益函數(shù)y,建立函數(shù)解析式,求出最大值即可
試題解析:(1)當(dāng)每輛車的月租金定為3 600元時(shí),未租出的車輛數(shù)為=12,
所以這時(shí)租出了100-12=88輛車.
(2)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為
f(x)=(x-150)-×50=-(x-4 050)2+307 050.
所以,當(dāng)x=4 050 時(shí),f(x)最大,其最大值為f(4 050)=307 050.
當(dāng)每輛車的月租金定為4 050元時(shí),月收益最大,其值為307 050元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位“準(zhǔn)笑星”在“信陽笑星”選拔賽中,5位評(píng)委給出的評(píng)分情況如圖所示,記甲、乙兩人的平均得分分別為 、 ,記甲、乙兩人得分的標(biāo)準(zhǔn)差分別為s1、s2 , 則下列判斷正確的是( )
A.< ,s1<s2
B.< ,s1>s2
C.> ,s1<s2
D.> ,s1>s2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛120千米(50≤x≤100)(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)12元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有紅、黃、藍(lán)三種顏色小旗各2面,將他們排成3行2列,要求每行及每列的顏色均互不相同,則不同的排列方法共有( )
A. 12種 B. 18種 C. 24種 D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本題滿分14分)
在數(shù)列中,,且.
(Ⅰ) 求,猜想的表達(dá)式,并加以證明;
(Ⅱ) 設(shè),求證:對(duì)任意的自然數(shù),都有;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù);命題q:當(dāng)x∈[ ,2]時(shí),函數(shù)f(x)=x+ > 恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+ax2+bx+c圖像上的點(diǎn)P(1,f(1))處的切線方程為y=﹣3x+1.
(1)若函數(shù)f(x)在x=﹣2時(shí)有極值,求f(x)的表達(dá)式;
(2)函數(shù)f(x)在區(qū)間[﹣2,0]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出了四個(gè)類比推理: (1.)由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若a,b,c為三個(gè)向量則( ) = ( )”;
(2.)“a,b為實(shí)數(shù),若a2+b2=0則a=b=0”類比推出“z1 , z2為復(fù)數(shù),若 ”;
(3.)“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
(4.)“在平面內(nèi),過不在同一條直線上的三個(gè)點(diǎn)有且只有一個(gè)圓”類比推出“在空間中,過不在同一個(gè)平面上的四個(gè)點(diǎn)有且只有一個(gè)球”.
上述四個(gè)推理中,結(jié)論正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AM過定點(diǎn)P(1,0),且與直線x=﹣1相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩點(diǎn),且 =0,求證:直線AB過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com