2.若復(fù)數(shù)z滿足(1+i)z=2i,其中i為虛數(shù)單位,則$\overline z$(  )
A.1-iB.1+iC.2-2iD.2+2i

分析 通過化簡求出z,從而求出z的共軛復(fù)數(shù)即可.

解答 解:∵(1+i)z=2i,
∴z=$\frac{2i}{1+i}$=i(1-i)=1+i,
則$\overline z$=1-i,
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算,考查復(fù)數(shù)的化簡求值,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二理上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

以下四個命題中:

①在回歸分析中, 可用相關(guān)指數(shù)的值判斷的擬合效果,越大,模型的擬合效果越好;

②兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對值越接近

③若數(shù)據(jù)的方差為,則的方差為;

④對分類變量的隨機(jī)變量的觀測值來說, 越小,判斷“有關(guān)系”的把握程度越大.

其中真命題的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知fn(x)=Cn0xn-Cn1(x-1)n+…+(-1)kCnk(x-k)n+…+(-1)nCnn(x-n)n,其中x∈R,n∈N*,k∈N,k≤n.
(1)試求f1(x),f2(x),f3(x)的值;
(2)試猜測fn(x)關(guān)于n的表達(dá)式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$f(x)=\left\{\begin{array}{l}1,x>0\\-1,x<0\end{array}\right.$,則不等式x+(x+2)f(x+2)≤5的解集是(-∞,-2)∪(2,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xlnx,g(x)=$\frac{a}{2}{x^2}$+x-a(a∈R).
(Ⅰ)若直線x=m(m>0)與曲線y=f(x)和y=g(x)分別交于M,N兩點(diǎn).設(shè)曲線y=f(x)在點(diǎn)M處的切線為l1,y=g(x)在點(diǎn)N處的切線為l2
(ⅰ)當(dāng)m=e時,若l1⊥l2,求a的值;
(ⅱ)若l1∥l2,求a的最大值;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)恰有兩個不同的極值點(diǎn)x1,x2,且x1<x2.若λ>0,且λlnx2-λ>1-lnx1恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.《九章算術(shù)》是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1千多年.在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉臑指四個面均為直角三角形的四面體.如圖,在塹堵ABC-A1B1C1中,AC⊥BC.
(Ⅰ)求證:四棱錐B-A1ACC1為陽馬;并判斷四面體B-A1CC1是否為鱉臑,若是,請寫出各個面的直角(只要求寫出結(jié)論).
(Ⅱ)若A1A=AB=2,當(dāng)陽馬B-A1ACC1體積最大時,求二面角C-A1B-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)$a={log_5}4,b={log_{\sqrt{2}}}3,c={({{{log}_{0.2}}3})^2}$,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.正項(xiàng)等比數(shù)列{an}中,存在兩項(xiàng)am、an使得$\sqrt{{a_m}•{a_n}}=2{a_1}$,且a6=a5+2a4,則$\frac{1}{m}+\frac{4}{n}$的最小值是( 。
A.$\frac{3}{2}$B.2C.$\frac{7}{3}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若兩個非零向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow a}|$,則向量$\overrightarrow a+\overrightarrow b與\overrightarrow b-\overrightarrow a$的夾角為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案