設(shè)a>0且a≠1,比較loga2a與loga3a的大小.
考點(diǎn):對(duì)數(shù)值大小的比較
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用a>0,可得2a<3a,分類討論,利用對(duì)數(shù)函數(shù)的單調(diào)性,即可得出結(jié)論.
解答: 解:∵a>0,∴2a<3a,
∴0<a<1時(shí),loga2a>loga3a;a>1時(shí),loga2a<loga3a.
點(diǎn)評(píng):本題考查對(duì)數(shù)值大小的比較,正確運(yùn)用對(duì)數(shù)函數(shù)的單調(diào)性是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x,y)滿足約束條件
x+y-3≤0
x-y-1≤0
x-1≥0
,O為坐標(biāo)原點(diǎn),A(3,4),則|
OP
|•cos∠AOP的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知如圖所示的多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的正方形,DE⊥平面ABCD,BF∥DE,且BF=2DE=4.
(1)求多面體ABCDEF的體積;
(2)在棱長(zhǎng)FC上是否存在一點(diǎn)P,使EP∥ABCD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:M∈{(x,y)||x|+|x-2|+
y2+2y+2
≤3};q:M∈{(x,y)|(x-1)2+y2<r2}(r>0).如果p是q的充分但不必要條件,則r的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(2α+β)=3sinβ,求證:tan(α+β)=2tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P點(diǎn)在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)H(-3,0),E(-1,0),點(diǎn)M在直線PQ上,且滿足
HP
PM
=0,
PM
=-
3
2
MQ
.當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),記點(diǎn)M的軌跡為G.在軌跡G上經(jīng)過(guò)點(diǎn)F(1,0)作弦AB
(1)求軌跡G的方程;
(2)若
AF
FB
,求證:
EF
⊥(
EA
EB
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=2+
2
2
t
y=1+
2
2
t
(t為參數(shù)),在極坐標(biāo)系(以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系)中,曲線C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ

(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C與直線l交于A、B兩點(diǎn),若點(diǎn)P的坐標(biāo)為(2,1),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以原點(diǎn)O為點(diǎn)A(2
3
,-2)為頂點(diǎn)作一個(gè)等邊△OAB,求點(diǎn)B的坐標(biāo)及
AB
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)到直線y=-
3
2
和點(diǎn)(0,2)距離之比為1
(1)求點(diǎn)的軌跡方程;
(2)直線l 垂直于曲線9x2-16y2=1的漸近線,直線所在的函數(shù)有f′(x)>0,且經(jīng)過(guò)點(diǎn)(4,0)求:軌跡上的點(diǎn)到直線l 的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案