6.若$(\begin{array}{l}{2}&{0}\\{-1}&{3}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{-2}\\{10}\end{array})$,則x+y=2.

分析 根據(jù)矩陣的乘法運算計算即可.

解答 解:∵$(\begin{array}{l}{2}&{0}\\{-1}&{3}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{2x+0}\\{-x+3y}\end{array})$,
∴$\left\{\begin{array}{l}{2x+0=-2}\\{-x+3y=10}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$,
故答案為:2.

點評 本題考查矩陣的乘法運算,矩陣的相等,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}\right.$,則z=2x-2y-3的取值范圍是( 。
A.[-$\frac{1}{3}$,3]B.[-2,3]C.[-$\frac{1}{3}$,3)D.$[-\frac{11}{3},3)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點M(1,1)到拋物線y=ax2的準(zhǔn)線的距離為2,則a=( 。
A.$\frac{1}{4}$或$-\frac{1}{12}$B.$-\frac{1}{12}$C.$\frac{1}{4}$D.4或-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.方程$\frac{{x}^{2}}{3-m}$-$\frac{{y}^{2}}{m+2}$=1表示雙曲線,則m的取值范圍是-2<m<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求過點(2$\sqrt{3}$,2)、($\sqrt{6}$,$\frac{\sqrt{2}}{2}$)的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{4π}{3}+\frac{{2\sqrt{3}}}{3}$${b_2}+{b_3}+{b_4}+…+{b_n}<\frac{n(n-1)}{4}$B.$\frac{2π}{3}+\frac{{2\sqrt{3}}}{3}$
C.$\frac{2π}{3}+\frac{{4\sqrt{3}}}{3}$D.$\frac{2π}{3}+4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.圓$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.$(θ為參數(shù))被直線y=0截得的劣弧長為( 。
A.$\frac{{\sqrt{2}π}}{2}$B.πC.$2\sqrt{2}π$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.48B.$\frac{32}{3}$C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t-1}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=2+sinθ}\end{array}\right.$(θ為參數(shù))
(Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,$\frac{π}{6}$),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求點Q到直線l的距離的最小值與最大值.

查看答案和解析>>

同步練習(xí)冊答案