設(shè)x,y滿足條件
x-y+1≥0
x+y≤5
y≥2
,則目標(biāo)函數(shù)z=x+2y的最大值為( 。
分析:先根據(jù)約束條件畫出可行域,再求出可行域中各角點的坐標(biāo),將各點坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)z=x+2y的最大值.
解答:解:不等式組表示的平面區(qū)域如圖所示,
三個頂點坐標(biāo)為A(3,2),B(2,3),C(1,2),
直線z=x+2y過點 B(2,3)時,z取得最大值為8;
故答案為:8.
點評:在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域②求出可行域各個角點的坐標(biāo)③將坐標(biāo)逐一代入目標(biāo)函數(shù)④驗證,求出最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y滿足條件
x+y≤3
y≤x-1
y≥0
,則z=x+y的最小值是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足條件
x+y≤3
y≤x-1
y≥0
,則w=e(x+1)2+y2的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足條件
x+y≤3
y≤x-1 
y≥0
,則w=(x+1)2+y2的最小值
e4
e4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)x、y滿足條件
x-4y≤-3
3x+5y≤25
x≥1
,則2x-y的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案