1-sin18°
=
 
考點(diǎn):二倍角的正弦
專題:計(jì)算題
分析:利用二倍角的正弦公式化簡后去根號(hào)即可得解.
解答: 解:
1-sin18°
=
1-2sin9°cos9°
=
(cos9°-sin9°)2
=cos9°-sin9°.
故答案為:cos9°-sin9°.
點(diǎn)評(píng):本題主要考查了二倍角的正弦公式的應(yīng)用,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,tanA=
2
5
,tanB=
3
7
,且最長邊為
2
,求
(1)∠C的大;
(2)最短的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為爭強(qiáng)學(xué)生社會(huì)主義價(jià)值觀的意識(shí),某中學(xué)高三年級(jí)組織了社會(huì)主義價(jià)值觀知識(shí)競賽,并隨機(jī)抽取了甲、乙兩個(gè)班中各5名學(xué)生的成績,成績?nèi)缦滤荆?br />
甲班8889929294
乙班8690929394
(1)根據(jù)表中的數(shù)據(jù),分別求出甲、乙兩個(gè)班成績的平均數(shù)和方差,并判斷對(duì)社會(huì)主義價(jià)值觀知識(shí)的掌握哪個(gè)班更穩(wěn)定?
(2)從甲、乙兩班競賽成績?cè)?0分以上(含90分)的同學(xué)中隨機(jī)抽取2名,記這兩名來自甲班的人數(shù)為X,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:實(shí)數(shù)x滿足x2-5ax+4a2<0(a>0),q:實(shí)數(shù)x滿足2<x≤5.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c都是實(shí)數(shù).已知命題p:若a>b,則a+c>b+c;命題q:若a>b>0,則ac>bc.則下列命題中為真命題的是( 。
A、(?p)∨q
B、p∧q
C、(?p)∧(?q)
D、(?p)∨(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠甲、乙、丙三個(gè)車間生產(chǎn)同一種產(chǎn)品,數(shù)量分別為450、750、600,用分層抽樣從三個(gè)車間中抽取一個(gè)容量為n的樣本,且每個(gè)產(chǎn)品被抽到的概率為0.02,則應(yīng)從乙車間抽產(chǎn)品數(shù)量為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別求出滿足下列條件的實(shí)數(shù)x,y的值
(1)2x-1+(y+1)i=x-y+(-x-y)i;
(2)
x2-x-6
x
+(x2-2x-3)i=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
1-x
的定義域?yàn)镸,函數(shù)g(x)=1n(1+x)的定義域?yàn)镹,則( 。
A、M∩N=(-1,1]
B、CRN=(-∞,-1)
C、M∩N=R
D、∁RM=[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一人從點(diǎn)A出發(fā),向東走500米到達(dá)點(diǎn)B,接著向北偏東60°走300米到達(dá)點(diǎn)C,然后再向北偏東45°走100米到達(dá)點(diǎn)D.試選擇適當(dāng)?shù)谋壤,用向量表示這個(gè)人的位移.

查看答案和解析>>

同步練習(xí)冊(cè)答案