【題目】下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線(xiàn)圖.
(1)由折線(xiàn)圖看出,可用線(xiàn)性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.
參考數(shù)據(jù): , , , .
參考公式:相關(guān)系數(shù)
回歸方程中, , .
【答案】(1)可以用線(xiàn)性回歸模型擬合與的關(guān)系;(2)1.82億噸.
【解析】試題分析:(1)由折線(xiàn)圖看出, 與 之間存在較強(qiáng)的正相關(guān)關(guān)系,將已知數(shù)據(jù)代入相關(guān)系數(shù)方程,可得答案;(2)根據(jù)已知中的數(shù)據(jù),求出回歸系數(shù),可得回歸方程,2016年應(yīng)的值為 ,代入可預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.
試題解析:(1)由折線(xiàn)圖數(shù)據(jù)和參考數(shù)據(jù)得: , ,
所以,相關(guān)系數(shù)
因?yàn)?/span>與的相關(guān)系數(shù)近似為0.99,說(shuō)明與的線(xiàn)性相關(guān)程度相當(dāng)高,從而可以用線(xiàn)性回歸模型擬合與的關(guān)系。
(2)由及(1)得, ,所以與的回歸方程為
將2016年對(duì)應(yīng)的代入回歸方程得: ,所以預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量將約1.82億噸.
【方法點(diǎn)晴】本題主要考查折線(xiàn)圖和線(xiàn)性回歸方程的應(yīng)用,屬于中檔題.求回歸直線(xiàn)方程的步驟:①依據(jù)樣本數(shù)據(jù)畫(huà)出散點(diǎn)圖,確定兩個(gè)變量具有線(xiàn)性相關(guān)關(guān)系;②計(jì)算的值;③計(jì)算回歸系數(shù);④寫(xiě)出回歸直線(xiàn)方程為;(2) 回歸直線(xiàn)過(guò)樣本點(diǎn)中心是一條重要性質(zhì),利用線(xiàn)性回歸方程可以估計(jì)總體,幫助我們分析兩個(gè)變量的變化趨勢(shì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次猜獎(jiǎng)游戲中,1,2,3,4四扇門(mén)里擺放了, , , 四件獎(jiǎng)品(每扇門(mén)里僅放一件).甲同學(xué)說(shuō):1號(hào)門(mén)里是,3號(hào)門(mén)里是;乙同學(xué)說(shuō):2號(hào)門(mén)里是,3號(hào)門(mén)里是;丙同學(xué)說(shuō):4號(hào)門(mén)里是,2號(hào)門(mén)里是;丁同學(xué)說(shuō):4號(hào)門(mén)里是,3號(hào)門(mén)里是.如果他們每人都猜對(duì)了一半,那么4號(hào)門(mén)里是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù),),(,),
⑴若,.求在上的最大值的表達(dá)式;
⑵若時(shí),方程在上恰有兩個(gè)相異實(shí)根,求實(shí)根的取值范圍;
⑶若,,求使得圖像恒在圖像上方的最大正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴(lài)于老師引入概念和描述問(wèn)題所用的時(shí)間,講座開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力(的值越大,表示接受能力越強(qiáng)),表示提出和講授概念的時(shí)間(單位:分),可以有以下公式: .
(1)開(kāi)講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?
(2)開(kāi)講5分鐘與開(kāi)講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?
(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c.已知c=2,C=.
(1)若△ABC的面積等于,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:①集合的子集個(gè)數(shù)有16個(gè);②定義在上的奇函數(shù)必滿(mǎn)足;③既不是奇函數(shù)又不是偶函數(shù);④偶函數(shù)的圖像一定與軸相交;⑤在上是減函數(shù)。
其中真命題的序號(hào)是 ______________(把你認(rèn)為正確的命題的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前3項(xiàng)和為6,前8項(xiàng)和為-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(4-an)qn-1 (q≠0,n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東莞市某高級(jí)中學(xué)在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限(單位:年, )和所支出的維護(hù)費(fèi)用(單位:萬(wàn)元)廠家提供的統(tǒng)計(jì)資料如下:
(1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護(hù)費(fèi)用關(guān)于的線(xiàn)性回歸方程;
(2)若規(guī)定當(dāng)維護(hù)費(fèi)用超過(guò)13.1萬(wàn)元時(shí),該批空調(diào)必須報(bào)廢,試根據(jù)(1)的結(jié)論求該批空調(diào)使用年限的最大值.
參考公式:最小二乘估計(jì)線(xiàn)性回歸方程中系數(shù)計(jì)算公式:
,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com