【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)見解析;(3).
【解析】試題分析:(1)由函數(shù)f(x)為R上的奇函數(shù),有f(0)=0,可求出b值,再由
f(1)=﹣f(﹣1),可求出a值.(2)用定義法證明函數(shù)的單調(diào)性,需按取值、作差、判斷符號(hào)、下結(jié)論等步驟進(jìn)行.
(3)由f(x)是R上的奇函數(shù)且f(kx2)+f(2x﹣1)>0,可得f(kx2)>f(1-2x), 又由f(x)在R上單調(diào)遞減,有kx2<1-2x.原問題等價(jià)于對(duì)任意都有kx2<1﹣2x成立,采用分離常數(shù)法將不等式轉(zhuǎn)化為k<,則需k<即可,最終問題轉(zhuǎn)化為求g(x)=在的最小值問題.
試題解析:
(1)因?yàn)閒(x)是奇函數(shù),所以f(0)=0,解得b=1,
f(x)= ,又由f(1)=﹣f(﹣1),解得a=2.
(2)證明:由(1)可得:f(x)=.
x1<x2 , ∴ ,
則f(x1)﹣f(x2)=,
∴f(x1)>f(x2).
∴f(x)在R上是減函數(shù).
(3)∵函數(shù)f(x)是奇函數(shù).
∴f(kx2)+f(2x﹣1)>0成立,等價(jià)于f(kx2)>﹣f(2x﹣1)=f(1﹣2x)成立,
∵f(x)在R上是減函數(shù),∴kx2<1﹣2x,
∴對(duì)于任意都有kx2<1﹣2x成立,
∴對(duì)于任意都有k<,
設(shè)g(x)=,
∴g(x)=,
令t= ,t∈[,2],
則有,∴g(x)min=g(t)min=g(1)=﹣1
∴k<﹣1,即k的取值范圍為(﹣∞,﹣1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說明
理由;
(3)當(dāng)時(shí).證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在時(shí)取得極小值.
(1)求實(shí)數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?/span>?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記表示中的最大值,如,已知函數(shù).
(1)求函數(shù)在上的值域;
(2)試探討是否存在實(shí)數(shù), 使得對(duì)恒成立?若存在,求的取值范圍;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域?yàn)閇-1,1],且|f(x)|的最大值為M.
(1)證明:|1+b|≤M;
(2)證明:M≥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道:人們對(duì)聲音有不同的感覺,這與它的強(qiáng)度有關(guān)系.聲音的強(qiáng)度用瓦/米2 ()表示,但在實(shí)際測(cè)量時(shí),常用聲音的強(qiáng)度水平表示,它們滿足以下公式: (單位為分貝, ,其中,這是人們平均能聽到的最小強(qiáng)度,是聽覺的開端).回答以下問題:
(1)樹葉沙沙聲的強(qiáng)度是,耳語的強(qiáng)度是,恬靜的無線電廣播的強(qiáng)度是,試分別求出它們的強(qiáng)度水平;
(2)某一新建的安靜小區(qū)規(guī)定:小區(qū)內(nèi)公共場(chǎng)所的聲音的強(qiáng)度水平必須保持在50分貝以下,試求聲音強(qiáng)度的范圍為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國生活垃圾無害化處理量.
參考數(shù)據(jù): , , , .
參考公式:相關(guān)系數(shù)
回歸方程中, , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,其中a∈R.
(I)當(dāng)a=1時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;
(II)求f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com