【題目】一次猜獎(jiǎng)游戲中,1,2,3,4四扇門里擺放了, , 四件獎(jiǎng)品(每扇門里僅放一件).甲同學(xué)說(shuō):1號(hào)門里是,3號(hào)門里是;乙同學(xué)說(shuō):2號(hào)門里是,3號(hào)門里是;丙同學(xué)說(shuō):4號(hào)門里是,2號(hào)門里是;丁同學(xué)說(shuō):4號(hào)門里是,3號(hào)門里是.如果他們每人都猜對(duì)了一半,那么4號(hào)門里是( )

A. B. C. D.

【答案】A

【解析】 由題意得,甲同學(xué)說(shuō):1號(hào)門里是,3號(hào)門里是,乙同學(xué)說(shuō):2號(hào)門里是,3號(hào)門里是;丙同學(xué)說(shuō):4號(hào)門里是,2號(hào)門里是;丁同學(xué)說(shuō):4號(hào)門里是,3號(hào)門里是 ,若他們每人猜對(duì)了一半,則可判斷甲同學(xué)中1號(hào)門中是是正確的;乙同學(xué)說(shuō)的2號(hào)門中有是正確的;并同學(xué)說(shuō)的3號(hào)門中有是正確的;丁同學(xué)說(shuō)的4號(hào)門中有是正確的,則可判斷在四扇門中,分別存有 ,所以號(hào)門里是,故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線y2 (a+c)x與橢圓交于B,C兩點(diǎn),若四邊形ABFC是菱形,則橢圓的離心率等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明

理由;

(3)當(dāng)時(shí).證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2-ax+ln(x+1)(a∈R).

(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值點(diǎn);

(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實(shí)數(shù)a的取值范圍;

(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),證明數(shù)列{cn}是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的甲、乙兩個(gè)車間的名工人進(jìn)行了勞動(dòng)技能大比拼,規(guī)定:技能成績(jī)大于或等于分為優(yōu)秀, 分以下為非優(yōu)秀,統(tǒng)計(jì)成成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)車間工人中隨機(jī)抽取人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計(jì)

甲車間

乙車間

合計(jì)

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認(rèn)為“成績(jī)與車間有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.

(1)將圓C和直線l的方程化為極坐標(biāo)方程;

(2)P是l上的點(diǎn),射線OP交圓C于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|·|OP|=|OR|2,當(dāng)點(diǎn)P在l上移動(dòng)時(shí),求點(diǎn)Q軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)時(shí)取得極小值.

1)求實(shí)數(shù)的值;

2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?/span>?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.

(1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.

參考數(shù)據(jù): , ,

參考公式:相關(guān)系數(shù)

回歸方程中,

查看答案和解析>>

同步練習(xí)冊(cè)答案