20.命題“?x∈R,x2-3ax+9<0”為真命題,求a的取值范圍a<-2或a>2.

分析 利用特稱命題是真命題,通過判別式列出不等式求解即可.

解答 解:因為命題“?x∈R,x2-3ax+9<0”為真命題,
所以,△=9a2-36>0.
解得a<-2或a>2.
故答案為:a<-2或a>2.

點評 本題考查命題的真假的判斷與應(yīng)用,特稱命題以及二次函數(shù)的性質(zhì)的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.過點M(1,2)作直線l交橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1于A,B兩點,若點M恰為線段AB的中點,則直線l的方程為8x+25y-58=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.程序框圖如圖:如果上述程序運行的結(jié)果S的值比2016小,若使輸出的S最大,那么判斷框中應(yīng)填入( 。
A.k≤10?B.k≥10?C.k≤9?D.k≥9?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,在同一地平面上,有一枝豎直地面的竹桿AB和球O,竹桿的長度和球的直徑都是3米,一束太陽光照到竹桿AB留下背影AC長為4米,則該太陽光同時照到球O留下背影DE長為$\frac{9}{2}$米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知$\vec a$=(-3,2,5),$\vec b$=(1,5,-1)則 $\vec a$+$\vec b$的值為( 。
A.(2,8,4)B.(1,3,6)C.(5,8,9)D.(-2,7,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=$\frac{x+1}{{{x^2}+3}}$在x=m處取到極大值,則m=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知雙曲線的焦距為26,$\frac{a^2}{c}$=$\frac{25}{13}$,則雙曲線的標準方程是$\frac{x^2}{25}-\frac{y^2}{144}$=1或$\frac{y^2}{25}-\frac{x^2}{144}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=x3+ax+b在(-1,1)上為單調(diào)遞減函數(shù),在(1,+∞)上為單調(diào)遞增函數(shù),則( 。
A.a=1,b=1B.a=1,b∈RC.a=-3,b=3D.a=-3,b∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
(3)求證:當x∈(0,e]時,e2x2-$\frac{5}{2}$x>(x+1)lnx.

查看答案和解析>>

同步練習冊答案