若函數(shù)y=f(x)的圖象上任意一點P(x,y)滿足條件|x|≥|y|,則稱函數(shù)f(x)是“優(yōu)雅型”函數(shù).已知函數(shù):
①f(x)=ln(|x|+1);
②f(x)=sinx;
③f(x)=e-|x|-1;
④f(x)=x+
1
x

則其中為“優(yōu)雅型”函數(shù)的個數(shù)有( 。
A、1B、2C、3D、4
考點:函數(shù)的圖象
專題:數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)“優(yōu)雅型”函數(shù)的定義,只需要滿足函數(shù)的圖象都在區(qū)域|x|≥|y|內(nèi)即可.
解答:解:函數(shù)y=f(x)的圖象上任意一點P(x,y)滿足條件|x|≥|y|,圖象如圖所示,則
①f(x)=ln(|x|+1),不全在區(qū)域|x|≥|y|;
②f(x)=sinx,滿足|x|≥|y|;
③f(x)=e-|x|-1,不全在區(qū)域|x|≥|y|;
對于④,曲線的兩條漸近線為y軸與y=x,滿足|x|≤|y|,
故選:A
點評:本題主要考查與函數(shù)有關(guān)的新定義題,正確理解題意是解決本題的關(guān)鍵,利用數(shù)形結(jié)合是解決本題的基本方法,本題也可以通過特殊值法進行排除.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(1+
10
cosa,
10
sina)(a∈[0,2π]),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點Q在曲線C:ρ=
1
2
sin(θ-
π
4
)
上.
(Ⅰ)求點P的軌跡極坐標方程和曲線C的直角坐標方程;
(Ⅱ)求點P的軌跡與曲線C交點的極坐標(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
cos(πx)
x2
的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg
5x4
的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長是1,點E是對角線AC1上一動點,記AE=x(0<x<
3
),過點E平行于平面A1BD的截面將正方體分成兩部分,其中點A所在的部分的體積為V(x),則函數(shù)y=V(x)的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2xcos2x
4x-1
的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斜率為2且在y軸上的截距為4的直線方程為( 。
A、y=2x+4
B、y=2x-4
C、y=2(x-4)
D、y=2(x+4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為AC的中點,
BC
=3
BE
,BD與AE交于點F,若 
AF
=λ
AE
,則實數(shù)λ的值為( 。
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標中,圓ρ=2cosθ與θ=
π
3
(ρ>0)所表示的圖形的交點的極坐標是
 

查看答案和解析>>

同步練習(xí)冊答案