在R上可導(dǎo)的函數(shù)f(x)=x3+ax2+2bx+c,當(dāng)x∈(0,1)時取得極大值,當(dāng)x∈(1,2)時取得極小值,求點(a,b)對應(yīng)的區(qū)域的面積以及的取值范圍.


解析:

函數(shù)f(x)的導(dǎo)數(shù)為f′(x)=x2+ax+2b,當(dāng)x∈(0,1)時,f(x)取得極大值,當(dāng)x∈(1,2)時,f(x)取得極小值,則方程x2+ax+2b=0有兩個根,一個根在區(qū)間(0,1)內(nèi),另一個根在區(qū)間(1,2)內(nèi),由二次函數(shù)f′(x)=x2+ax+2b的圖象與方程x2+ax+2b=0根的分布之間的關(guān)系可以得到

在aOb平面內(nèi)作出滿足約束條件的點(a,b)對應(yīng)的區(qū)域為△ABD(不包括邊界),

如圖陰影部分,其中點A(-3,1),B(-1,0),D(-2,0),

△ABD的面積為

SABD=|BD|×h=(h為點A到a軸的距離).

點C(1,2)與點(a,b)連線的斜率為,

顯然(kCA,kCB),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則關(guān)于x的不等式x•f′(x)<0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則關(guān)于x的不等式(x-1)f′(x)<0的解集為
(-∞,-2)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上可導(dǎo)的函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,當(dāng)x∈(0,1)時取得極大值,當(dāng)x∈(1,2)時取得極小值,則
b-2
a-1
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上可導(dǎo)的函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,當(dāng)x∈(0,1)時取得極大值.當(dāng)x∈(1,2)時取得極小值,則
b-2
a-1
的取值范圍是( 。
A、(
1
4
,1)
B、(
1
2
,1)
C、(-
1
2
,
1
4
)
D、(
1
4
,
1
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則不等式f(x)•f′(x)<0的解集為(  )

查看答案和解析>>

同步練習(xí)冊答案