13.若x>0,y>0,且xy=4,則$\frac{1}{x}+\frac{1}{y}$的最小值為1.

分析 由基本不等式即可求出最小值.

解答 解:x>0,y>0,且xy=4,則$\frac{1}{x}+\frac{1}{y}$≥2$\sqrt{\frac{1}{xy}}$=1,當且僅當x=y=2時取等號,
故選:1

點評 本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一張半徑為4的圓形紙片的圓心為F1,F(xiàn)2是圓內(nèi)一個定點,且F1F2=2,P是圓上一個動點,把紙片折疊使得F2與P重合,然后抹平紙片,折痕為CD,設(shè)CD與半徑PF1的交點為Q,當P在圓上運動時,則Q點的軌跡為曲線E,以F1F2所在直線x為軸,F(xiàn)1F2的中垂線為y軸建立平面直角坐標系,如圖.
(1)求曲線E的方程;
(2)曲線E與x軸的交點為A1,A2(A1在A2左側(cè)),與x軸不重合的動直線l過點F2且與E交于M、N兩點(其中M在x軸上方),設(shè)直線A1M、A2N交于點T,求證:動點T恒在定直線l′上,并求l′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若從2個海濱城市和2個內(nèi)陸城市中隨機選2個去旅游,那么恰好選1個海濱城市的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將正整數(shù)排成一個三角形數(shù)陣:按照如圖排列的規(guī)律,則第20行從左到右的第4個數(shù)為194.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)$f(x)=\frac{{63{e^x}}}{a}-\frac{{32{e^x}}}$(x∈R)為奇函數(shù),則ab=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若等腰△ABC的周長為$4\sqrt{2}$,則△ABC腰AB上的中線CD的長的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在△ABC中,∠C為直角,AC=BC=4.沿△ABC的中位線DE,將平面ADE折起,使得∠ADC=90°,得到四棱錐A-BCDE.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求三棱錐E-ABC的體積;
(Ⅲ)M是棱CD的中點,過M作平面α與平面ABC平行,設(shè)平面α截四棱錐A-BCDE所得截面面積為S,試求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺A、B設(shè)備上加工一件甲所需工時分別為1h,2h,加工一件乙設(shè)備所需工時分別為2h,1h.A、B兩種設(shè)備每月有效使用臺時數(shù)分別為400h和500h,分別用x,y表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)定義域為R的函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,(x≤0)}\\{{x}^{2}-2x+1,(x>0)}\end{array}\right.$.
(1)在如圖所示的平面直角坐標系內(nèi)作出函數(shù)f(x)的圖象,并寫出函數(shù)f(x)的單調(diào)區(qū)間(不需證明);
(2)求函數(shù)f(x)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

同步練習冊答案