5.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且${a_1}+{a_3}=\frac{5}{2}$,${a_2}+{a_4}=\frac{5}{4}$,則an=22-n

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵${a_1}+{a_3}=\frac{5}{2}$,${a_2}+{a_4}=\frac{5}{4}$,
∴${a}_{1}(1+{q}^{2})$=$\frac{5}{2}$,${a}_{1}(q+{q}^{3})$=$\frac{5}{4}$,
解得a1=2,q=$\frac{1}{2}$.
則an=2×$(\frac{1}{2})^{n-1}$=22-n
故答案為:22-n

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.從2張1元,3張0.5元,2張0.1元的紙幣中,任取4張,面值和超過2元的取法總數(shù)為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z滿足z•i=3+4i,則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果函數(shù)y=2sin(2x-φ)的圖象關(guān)于點(diǎn)($\frac{4π}{3}$,0)中心對(duì)稱,那么|φ|的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓(x-1)2+y2=1與圓x2+(y-1)2=2的位置關(guān)系為( 。
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x2-x-6>0},集合$B=\{y\left|{y=\sqrt{{x^2}+2x+10}}\right.\}$,全集U=R,則(∁UB)∩A為(  )
A.(-∞,-2)B.(2,3)C.(3,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若雙曲線的漸近線方程為$\frac{x}{2}$±$\frac{y}{3}$=0,且過點(diǎn)(2,-6),則雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{27}$-$\frac{{x}^{2}}{12}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.曲線y=a$\sqrt{x}$(a>0)與曲線y=ln$\sqrt{x}$有公共點(diǎn),且在公共點(diǎn)處的切線相同,則a的值為( 。
A.eB.e2C.$\frac{1}{{e}^{2}}$D.$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.己知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線的離心率為$\frac{\sqrt{5}}{2}$,則其漸近線方程為y=±$\frac{1}{2}$x或y=±2x,兩漸近線的夾角為arctan$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案