20.圓(x-1)2+y2=1與圓x2+(y-1)2=2的位置關(guān)系為( 。
A.外離B.外切C.相交D.內(nèi)切

分析 先求出兩個圓的圓心和半徑,再根據(jù)圓心距大于半徑之差而小于半徑之和,可得兩個圓相交.

解答 解:這兩個圓(x-1)2+y2=1與圓x2+(y-1)2=2的圓心分別為(1,0)、(0,1); 半徑分別為1、$\sqrt{2}$.
圓心距為$\sqrt{2}$,大于半徑之差而小于半徑之和,可得兩個圓相交,
故選:C.

點評 本題主要考查圓的標準方程,兩個圓的位置關(guān)系的判定方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在復(fù)數(shù)范圍內(nèi)方程x2-5|x|+6=0的解的個數(shù)為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合U={x∈Z|x2-x-12≤0},A={-2,-1,3},B={0,1,3,4},則(∁A)∩B=(  )
A.{0,2,4}B.{0,1,4}C.{0,4}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i是虛數(shù)單位,若z(1+i)=|i+1|,則z的虛部為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{-\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)$\overrightarrow{x}$=(cosα,sinα),$\overrightarrow{y}$=(cosβ,sinβ)且β-α=$\frac{π}{3}$,則$\overrightarrow{x}$在$\overrightarrow{y}$方向上的投影為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等比數(shù)列{an}的前n項和為Sn,且${a_1}+{a_3}=\frac{5}{2}$,${a_2}+{a_4}=\frac{5}{4}$,則an=22-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x3+ax2+bx+c是定義在[2b-5,2b-3]上的奇函數(shù),則$f(\frac{1}{2})$的值為( 。
A.$\frac{1}{3}$B.$\frac{9}{8}$C.1D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|2x2-3x-9≤0},B={x|x≥m}.若(∁RA)∩B=B,則實數(shù)m的值可以是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),F(xiàn)(c,0)是右焦點,圓x2+y2=c2與雙曲線右支的一個交點是P,若直線FP與雙曲線左支有交點,則雙曲線離心率的取值范圍是( 。
A.(2,+∞)B.($\sqrt{5}$,+∞)C.(1,2)D.(1,$\sqrt{5}$)

查看答案和解析>>

同步練習(xí)冊答案