2.已知定義在R上的函數(shù)f(x)滿足:$f(x+1)=\frac{1}{f(x)}$,x∈(0,1]時,f(x)=2x,則f(log29)等于(  )
A...B.$\frac{9}{8}$C.$\frac{8}{9}$D.$\frac{25}{16}$

分析 根據(jù)函數(shù)f(x)滿足:$f(x+1)=\frac{1}{f(x)}$,求出函數(shù)的周期,利用x∈(0,1]時,f(x)=2x,即可求f(log29)的值.

解答 解:函數(shù)f(x)滿足:$f(x+1)=\frac{1}{f(x)}$,
可得:f(x+2)=$\frac{1}{f(x+1)}=f(x)$,
∴函數(shù)的周期T=2.
∴f(log29)=f(2+log2$\frac{9}{4}$)=f(log2$\frac{9}{4}$).
∵$1<lo{g}_{2}\frac{9}{4}$<2
∴f(1+log2$\frac{9}{8}$)=$\frac{1}{f(lo{g}_{2}\frac{9}{8})}$,
∵$0<lo{g}_{2}\frac{9}{8}<1$,
∴f(log2$\frac{9}{8}$)=$\frac{9}{8}$
∴f(log29)=$\frac{1}{f(lo{g}_{2}\frac{9}{8})}$=$\frac{8}{9}$.
故選C.

點評 本題考查了函數(shù)周期的求法,對數(shù)和指數(shù)的基本運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,向量$\overrightarrow{a}$與$\overrightarrow$的夾角為150°.
(1)求:|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+3λ$\overrightarrow$)⊥($\overrightarrow{a}$+λ$\overrightarrow$),求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某高中男子體育小組的50m賽跑成績(單位:s)如下:
4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,7.6,6.3,6.4,6.4,6.5,6.7,7.1,6.9,6.4,7.1,7.0
設(shè)計一個程序從這些成績中搜索出小于6.8s的成績.并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知F1(-c,0)、F2(c、0)分別是橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{5}$=1(a>0)的左、右焦點,點P是橢圓上一點,且PF2⊥F1F2,|PF1|-|PF2|=$\frac{3a}{2}$.
(1)求橢圓G的方程;
(2)直線l與橢圓G交于兩個不同的點M,N.
(i)若直線l的斜率為1,且不經(jīng)過橢圓G上的點C(4,n),其中n>0,求證:直線CM與CN關(guān)于直線x=4對稱.
(ii)若直線l過F2,點B是橢圓G的上頂點,是否存在直線l,使得△BF2M與△BF2N的面積的比值為2?如果存在,求出直線l的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a,b,c∈R,且a>b,則下列選項中一定成立的是( 。
A.ac>bcB.$\frac{1}{a}<\frac{1}$C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知不等式|x-m|<|x|的解集為(1,+∞).
(1)求實數(shù)m的值;
(2)若不等式$\frac{a-5}{x}<|{1+\frac{1}{x}}|-|{1-\frac{m}{x}}|<\frac{a+2}{x}$對x∈(0,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2sinx,0≤x≤π}\\{{x}^{2},x<0}\end{array}\right.$,則函數(shù)y=f(f(x))-1的零點的個數(shù)是( 。
A.3B.4C.5D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知A,B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A,B重合的動點.MN是圓O的一條直徑,則$\overrightarrow{CM}$•$\overrightarrow{CN}$的取值范圍是( 。
A.[-$\frac{3}{4}$,0)B.[-$\frac{3}{4}$,0]C.[-$\frac{1}{2}$,1)D.[-$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐P-ABCD中,底面ABCD是邊長為4的菱形,∠BAD=60°,側(cè)面PAD⊥底面ABCD,且PA=PD=$\sqrt{13}$,M,N分別為BC,PA的中點
(1)求證:BN∥平面PDM
(2)求平面PAB與平面PCD所成的銳二面角的大。

查看答案和解析>>

同步練習(xí)冊答案