2.已知(1,2)∈A∩B,A={(x,y)|y2=ax+b},B={(x,y)|x2-ay-b=0},則a=-3,b=7.

分析 根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:∵(1,2)∈A∩B,
∴x=1,y=2是方程組$\left\{\begin{array}{l}{{y}^{2}=ax+b}\\{{x}^{2}-ay-b=0}\end{array}\right.$的解,
即$\left\{\begin{array}{l}{a+b=4}\\{1-2a-b=0}\end{array}\right.$,
解得a=-3,b=7,
故答案為:-3,7

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,根據(jù)二元一次方程組的解法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=cos4$\frac{x}{2}$-sin4$\frac{x}{2}$+2的最小正周期是( 。
A.πB.$\frac{π}{2}$C.D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在三棱錐P-ABC中,平面PAB⊥平面ABC,PA=PB,AC⊥BC,AB=4,PC=6,則三棱錐P-ABC的外接球O的表面積為( 。
A.$\frac{81π}{2}$B.41πC.32$\sqrt{2}$πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知α、β、γ組成公差為$\frac{π}{3}$的等差數(shù)列,求tanα•tanβ+tanβtanγ+tanγtanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)的值域,單調(diào)區(qū)間.
y=log${\;}_{\frac{1}{2}}$(x-1)-log${\;}_{\frac{1}{2}}$(x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)ω>0,m>0,若函數(shù)f(x)=msin$\frac{ωx}{2}$cos$\frac{ωx}{2}$在區(qū)間[-$\frac{π}{3}$,$\frac{π}{3}$]上單調(diào)遞增,則ω的取值范圍是( 。
A.(0,$\frac{2}{3}$)B.(0,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A={x∈R|a≤x≤2},A∪{x∈R|x>0}={x∈R|x>0},則實(shí)數(shù)a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知銳角α的終邊上一點(diǎn)P(sin40°,1+cos40°),則α等于70°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2sin(π-x)cosx,求f(x)的最小正周期.

查看答案和解析>>

同步練習(xí)冊(cè)答案