9.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y-4≤0\\ x-y+4≥0\\ y≥0\end{array}\right.$,則z=3x+2y的最大值為( 。
A.6B.8C.10D.12

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x+y-4≤0\\ x-y+4≥0\\ y≥0\end{array}\right.$畫出平面區(qū)域,如圖所示.

A(4,0),
化目標(biāo)函數(shù)z=3x+2y為$y=-\frac{3x}{2}+\frac{z}{2}$,
由圖可知,當(dāng)直線$y=-\frac{3x}{2}+\frac{z}{2}$過點(diǎn)A時(shí),目標(biāo)函數(shù)取得最大值.
∴zmax=3×4+2×0=12.
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.?dāng)?shù)列{an}的通項(xiàng)公式為an=30+7n-n2,n∈N*
(I)若an>0,求n的取值;
(Ⅱ)數(shù)列{an}中,是否存在最大項(xiàng)?若存在,求出最大項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1右支上一點(diǎn),F(xiàn)1、F2是左、右焦點(diǎn),若tan∠PF1F2=$\frac{1}{2}$,sin∠PF2F1=$\frac{2\sqrt{5}}{5}$,則此雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{an}是等差數(shù)列,且a1>0,若a1008+a1009>0,a1008•a1009<0同時(shí)成立,則使得Sn>0成立的n的最大值為(  )
A.2016B.2017C.2018D.2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列四個(gè)結(jié)論:
①若“p∧q是真命題”,則“¬p可能是真命題”;
②命題“?x0∈R,x${\;}_{0}^{2}$-x-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“φ=$\frac{π}{2}$”是“y=sin(2x+φ)為偶函數(shù)”的充要條件;
④當(dāng)a<0時(shí),冪函數(shù)y=xa在區(qū)間(0,+∞)上單調(diào)遞減.
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}中,a1+a7=8,則a2+a4+a6=(  )
A.8B.12C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.以下命題正確的是:①④.
①把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個(gè)單位,可得到y(tǒng)=3sin2x的圖象;
②四邊形ABCD為長(zhǎng)方形,AB=2,BC=1,O為AB中點(diǎn),在長(zhǎng)方形ABCD內(nèi)隨機(jī)取一點(diǎn)P,取得的P點(diǎn)到O的距離大于1的概率為1-$\frac{π}{2}$;
③為了了解800名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;
④已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為$\stackrel{∧}{y}$=1.23x+0.08.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是一個(gè)算法的程序框圖,當(dāng)輸入x的值為3時(shí),輸出y的結(jié)果恰好是$\frac{1}{3}$,則?處的關(guān)系式可以是( 。
A.y=x2B.y=3-xC.y=3xD.y=x${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow b=(-3,\;1)$,若k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,則實(shí)數(shù)k=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案