設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意都有:;
(1)求;
(2)猜想的表達(dá)式并證明.

(1) , 又,
,,  (2)猜想 下面用數(shù)學(xué)歸納法證明(略)

解析試題分析:(1) ,  又,
,,  
(2)猜想 下面用數(shù)學(xué)歸納法證明:
1°當(dāng)n=1時(shí),,猜想正確;
2°假設(shè)當(dāng)n=k時(shí),猜想正確,即,
那么,n=k+1時(shí),由,猜想也成了,
綜上知,對(duì)一切自然數(shù)n均成立。
考點(diǎn):本題主要考查歸納、猜想、證明的推理方法,數(shù)學(xué)歸納法。
點(diǎn)評(píng):中檔題,涉及數(shù)列中的關(guān)系,確定數(shù)列的特征,往往要建立兩式,相減或相除等。利用數(shù)學(xué)歸納法證明問題,要注意其步驟規(guī)范,做好“兩步一結(jié)”。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列計(jì)算由此推測(cè)出的計(jì)算公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,n∈N,An=2n2,Bn=3n,試比較AnBn的大小,
并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.

(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于,把表示,當(dāng)時(shí),;當(dāng)時(shí),為0或1. 記為上述表示中為0的個(gè)數(shù)(例如:,,),若,,,則(1)           .
(2)             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知數(shù)列{}滿足,
(I)寫出,并推測(cè)的表達(dá)式;
(II)用數(shù)學(xué)歸納法證明所得的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知復(fù)數(shù),則 (    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

對(duì)任意復(fù)數(shù),定義,其中的共軛復(fù)數(shù).對(duì)任意復(fù)數(shù)、,有如下四個(gè)命題:
;
;
;
.
則真命題的個(gè)數(shù)是(   )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案