1.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且對(duì)任意n∈N*都有S${\;}_{n}+\frac{1}{2}{a}_{n}$=$\frac{1}{2}$
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}={log_{\frac{1}{3}}}{a_n}$,求數(shù)列{an+bn}的前n項(xiàng)和.

分析 (1)利用遞推式、等比數(shù)列的通項(xiàng)公式即可得出;
(2)${b_n}={log_{\frac{1}{3}}}{a_n}$=$lo{g}_{\frac{1}{3}}(\frac{1}{3})^{n}$=n,利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:(1)∵${S}_{n}+\frac{1}{2}{a}_{n}=\frac{1}{2}$,①
當(dāng)n=1時(shí),${a}_{1}+\frac{1}{2}{a}_{1}$=$\frac{1}{2}$,解得${a}_{1}=\frac{1}{3}$,
當(dāng)n≥2時(shí),${S}_{n-1}+\frac{1}{2}{a}_{n-1}=\frac{1}{2}$,②
①-②得${a}_{n}+\frac{1}{2}{a}_{n}-\frac{1}{2}{a}_{n-1}=0$,化為${a}_{n}=\frac{1}{3}{a}_{n-1}$,
∴數(shù)列{an}是等比數(shù)列,公比為$\frac{1}{3}$,首項(xiàng)為$\frac{1}{3}$,
∴${a}_{n}=(\frac{1}{3})^{n}$,
(2 )${b_n}={log_{\frac{1}{3}}}{a_n}$=$lo{g}_{\frac{1}{3}}(\frac{1}{3})^{n}$=n,
∴an+bn=n+$(\frac{1}{3})^{n}$.
∴數(shù)列{an+bn}的前n項(xiàng)和=$\frac{n(n+1)}{2}$+$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{n(n+1)}{2}$+$\frac{1}{2}[1-(\frac{1}{3})^{n}]$.

點(diǎn)評(píng) 本題考查了遞推式的應(yīng)用、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求證:|x-a|-|x-b|≤|a-b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.6B.$\frac{20}{3}$C.$\frac{16}{3}$D.$\frac{19}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知x,y滿足$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ y≤2\end{array}\right.$時(shí).則$\frac{x+2y+5}{x-1}$的取值范圍是(  )
A.[-$\frac{5}{2}$,$\frac{5}{2}$]B.(-∞,-$\frac{5}{2}$]∪[$\frac{5}{2}$,+∞)C.[-4,6]D.(-∞,-4]∪[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}滿足an>0,a1=2,且an+12=2an2+anan+1
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若${b_n}={log_{\sqrt{2}}}{a_n}-1,{c_n}={a_n}•{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若復(fù)數(shù)z=(m-1)+(m-2)i,(m∈R)是純虛數(shù),復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(0,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ax+1,a是常數(shù),a∈R.
(Ⅰ)求曲線y=f(x)在點(diǎn)P(1,f(1))處的切線l的方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)證明:函數(shù)f(x)(x≠1)的圖象在直線l的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.復(fù)數(shù)$\frac{3+i}{1+2i}$=1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,AB=1,∠ABC=60°,$\overrightarrow{AC}$•$\overrightarrow{AB}$=-1,若O是△ABC的重心,則$\overrightarrow{BO}$•$\overrightarrow{AC}$的值為( 。
A.1B.$\frac{5}{2}$C.$\frac{8}{3}$D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案