設雙曲線C經(jīng)過點(2,2),且與
y2
4
-x2=1具有相同漸進線,則雙曲線C的方程為
 
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:利用雙曲線漸近線之間的關系,利用待定系數(shù)法即可得到結論.
解答: 解:與
y2
4
-x2=1具有相同漸近線的雙曲線方程可設為
y2
4
-x2=m,(m≠0),
∵雙曲線C經(jīng)過點(2,2),
∴m=-3,
即雙曲線方程為
y2
4
-x2=-3,即
x2
3
-
y2
12
=1

故答案為:
x2
3
-
y2
12
=1
點評:本題主要考查雙曲線的性質,利用漸近線之間的關系,利用待定系數(shù)法是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a∈R,若(a-i)(3-2i)是純虛數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PO⊥平面ABCD,點O在AB上,EA∥PO,四邊形ABCD為直角梯形,且AB∥CD,BC⊥AB,BC=CD=BO=PO,EA=AO=
1
2
CD

(1)求證:PE⊥平面PBC;
(2)求證:平面EDO∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c的導函數(shù)y=f′(x)的圖象如圖所示,給出下列三個結論:
①f(x)的單調遞減區(qū)間是(1,3);
②函數(shù)f(x)在x=1處取得極小值;
③a=-6,b=9.正確的結論是( 。
A、①③B、①②C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的各項均為正整數(shù),且滿足an+1=an2-2nan+2(n∈N+),又a5=11.
(1)求a1,a2,a3,a4的值并由此推測出{an}的通項公式(不要求證明);
(2)設bn=11-an,Sn=|b1|+|b2|+…+|bn|,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,其中主(正)視圖是邊長為2的正三角形,俯視圖是正方形,那么該幾何體的左(側)視圖的面積是(  )
A、2
3
B、
3
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點F(c,0)的直線交雙曲線于A,B兩點,交y軸于點P,則有
|PA|
|AF|
+
|PB|
|BF|
為定值
2ac
b2
,類比雙曲線這一結論,在橢圓
x2
a2
+
y2
b2
=1
(a>b>c)中,
|PA|
|AF|
+
|PB|
|BF|
也為定值,則這個定值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產品的廣告費用x萬元與銷售額y萬元的統(tǒng)計數(shù)據(jù)如下表
廣告費用x(萬元)4235
銷售額y(萬元)492639m
根據(jù)上表可得回歸方程
y
=bx+a中b為9.4,據(jù)此模型預報廣告費用為6萬元時,銷售額為65.5,則a,m為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e1
e2
為不共共線的非零向量,且|
e1
|=|
e2
|=1,則以下四個向量中模最大者為( 。
A、
1
2
e1
+
1
2
e2
B、
1
3
e1
+
2
3
e2
C、
2
5
e1
+
3
5
e2
D、
1
4
e1
+
3
4
e2

查看答案和解析>>

同步練習冊答案