【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2a﹣1x+a2﹣5=0}

1)若A∩B={2},求實(shí)數(shù)a的值;

2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

【答案】1a的值為-1或-3;

2a的取值范圍是a≤3.

【解析】

(1)根據(jù)條件AB={2},得到,代入方程,求得的值,分類討論即可求解;

(2)由ABA,轉(zhuǎn)化為,然后分類討論,建立關(guān)系式,即可求解實(shí)數(shù)的取值范圍.

解:由x2-3x+2=0x=1x=2,

故集合A={1,2}.

(1)AB={2},2B,代入B中的方程,

a2+4a+3=0a=-1a=-3.

當(dāng)a=-1時(shí),B={x|x2-4=0}={-2,2},滿足條件;

當(dāng)a=-3時(shí),B={x|x2-4x+4=0}={2},滿足條件.

綜上,a的值為-1或-3.

(2)對(duì)于集合B,

Δ=4(a+1)2-4(a2-5)=8(a+3).

ABA,BA.

①當(dāng)Δ<0,即a<-3時(shí),B,滿足條件;

②當(dāng)Δ=0,即a=-3時(shí),B={2},滿足條件;

③當(dāng)Δ>0,即a>-3時(shí),BA={1,2}才能滿足條件,

則由根與系數(shù)的關(guān)系得矛盾.

綜上,a的取值范圍是{a|a≤-3}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則A∩B=(
A.{1,3}
B.{5,6}
C.{4,5,6}
D.{4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率 ,過(guò)點(diǎn)A(0,﹣b)和B(a,0)的直線與原點(diǎn)的距離為
(1)求橢圓的方程;
(2)已知定點(diǎn)E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn),問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下關(guān)于圓錐曲線的命題中

①設(shè)是兩個(gè)定點(diǎn), 為非零常數(shù),若,則動(dòng)點(diǎn)的軌跡為雙曲線的一支;②過(guò)定圓上一定點(diǎn)作圓的動(dòng)弦, 為坐標(biāo)原點(diǎn),若,則動(dòng)點(diǎn)的軌跡為橢圓;③方程的兩根可分別作為橢圓和雙曲線的離心率;④雙曲線與橢圓有相同的焦點(diǎn).

其中真命題的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓上任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,線段的垂直平分線與交于點(diǎn).

(1)求點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)的動(dòng)直線與點(diǎn)的軌跡交于兩點(diǎn),在軸上是否存在定點(diǎn)使以為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請(qǐng)專業(yè)培訓(xùn)機(jī)構(gòu)進(jìn)行培訓(xùn).培訓(xùn)的總費(fèi)用由兩部分組成:一部分是給每位參加員工支付400元的培訓(xùn)材料費(fèi);另一部分是給培訓(xùn)機(jī)構(gòu)繳納的培訓(xùn)費(fèi).若參加培訓(xùn)的員工人數(shù)不超過(guò)30人,則每人收取培訓(xùn)費(fèi)1000元;若參加培訓(xùn)的員工人數(shù)超過(guò)30人,則每超過(guò)1人,人均培訓(xùn)費(fèi)減少20元.設(shè)公司參加培訓(xùn)的員工人數(shù)為x人,此次培訓(xùn)的總費(fèi)用為y元.

(1)求出yx之間的函數(shù)關(guān)系式;

(2)請(qǐng)你預(yù)算:公司此次培訓(xùn)的總費(fèi)用最多需要多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADAB,ABDC,ADDCAP2AB1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點(diǎn),滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種大型商品,A,B兩地都有出售,且價(jià)格相同,某地居民從兩地之一購(gòu)得商品后,運(yùn)回的費(fèi)用是:每單位距離A地的運(yùn)費(fèi)是B地運(yùn)費(fèi)的3倍.已知A,B兩地相距10 km,顧客選A或B地購(gòu)買這件商品的標(biāo)準(zhǔn)是:包括運(yùn)費(fèi)和價(jià)格的總費(fèi)用較低.求A,B兩地的售貨區(qū)域的分界線的曲線形狀,并指出曲線上、曲線內(nèi)、曲線外的居民應(yīng)如何選擇購(gòu)貨地點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知點(diǎn)是拋物線上一定點(diǎn),直線的斜率互為相反數(shù),且與拋物線另交于兩個(gè)不同的點(diǎn).

1)求點(diǎn)到其準(zhǔn)線的距離;(2)求證:直線的斜率為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案