分析 設(shè)P點(diǎn)坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算,及兩點(diǎn)之間距離公式,由P在橢圓上,即可求得P點(diǎn)坐標(biāo),即可求得答案.
解答 解:設(shè)P(x,y),由F1,F(xiàn)2分別為左、右焦點(diǎn),即F1(-2,0),F(xiàn)2(2,0),
∴$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=(-2-x,y)(2-x,y)=-(4-x2)+y2=-4+x2+y2,
由P在雙曲線x2$-\frac{{y}^{2}}{3}$=1,即3x2-y2=3,
∴$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=-4+x2+y2=4x2-7,
設(shè)丨$\overrightarrow{P{F}_{1}}$丨=$\sqrt{(-2-x)^{2}+{y}^{2}}$,丨$\overrightarrow{P{F}_{2}}$丨=$\sqrt{(2-x)^{2}+{y}^{2}}$,
則丨$\overrightarrow{P{F}_{1}}$丨+丨$\overrightarrow{P{F}_{2}}$丨=$\sqrt{(2+x)^{2}+{y}^{2}}$+=$\sqrt{(2-x)^{2}+{y}^{2}}$=10,
將3x2-y2=3,代入上式,
解得x=$\frac{5}{2}$,
故$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=-4+x2+y2=4x2-7=25-7=18,
故答案為:18,
點(diǎn)評(píng) 本題考查向量數(shù)量積的坐標(biāo)運(yùn)算,兩點(diǎn)之間的距離公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件) | 11 | 9 | 8 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A12 | B. | A13 | C. | A14 | D. | A15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-10,2) | B. | (-∞,-10)∪(2,+∞) | C. | [-10,2] | D. | (-∞,-10]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{29}$-$\sqrt{13}$ | B. | 5+$\sqrt{13}$ | C. | 2$\sqrt{7}$+$\sqrt{13}$ | D. | $\sqrt{29}$+$\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{60}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com