在如圖所示的幾何體中.EA⊥平面ABC,

DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中點.
(Ⅰ)求證:CM⊥EM ;
(Ⅱ)求多面體ABCDE的體積
(Ⅲ)求直線DE與平面EMC所成角的正切值.             
見解析
解:(I)證明:的中點,
 
平面,
(II)解:連結,設,則,
在直角梯形中,,的中點.
,
平面,平面,
是直線和平面所成的角.
中,,.    
所以直線與平面所成的角的正切值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是邊長為1的正方形,底面,。

(1)求證:
(2)設棱的中點為,求異面直線所成角的大小;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題共14分)
  四棱錐P—ABCD中,PA⊥底面ABCD,AB//CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
 。↖)求證:BC⊥平面PAC;
 。↖I)求二面角D—PC—A的大小;
 。↖II)求點B到平面PCD的距離。
  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正三棱柱ABCA1B1C1的各棱長都相等,D、E分別是CC1AB1的中點,點FBC上且滿足BFFC=1∶3 
(1)若MAB中點,求證 BB1∥平面EFM
(2)求證 EFBC;
(3)求二面角A1B1DC1的大小  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知平面平行于三棱錐的底面,等邊三角形所在平面與面垂直,且,設。
(Ⅰ)證明:為異面直線的公垂線;
(Ⅱ)求點與平面的距離;
(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直三棱柱中,,
(1)求證:平面平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

棱長為1的正方體的8個頂點都在球的表面上,分別
是棱,的中點,則直線被球截得的線段長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知ab為直線,α、β為平面.在下列四個命題中,
① 若a⊥α,b⊥α,則ab;  ② 若 a∥α,b ∥α,則ab;
③ 若a⊥α,a⊥β,則α∥β;  ④ 若α∥b,β∥b,則α∥β.
正確命題的個數(shù)是
A.1B.3C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正四棱錐的一個對角面的面積是一個側面面積的倍,則側面與底面所成二面角的大小是___________。

查看答案和解析>>

同步練習冊答案