3.如圖,在△ABC中,B(-1,0),C(1,0),CD、BE分別是△ABC的兩條中線(xiàn)且相交于點(diǎn)G,且|CD|+|BE|=6.
(Ⅰ)求點(diǎn)G的軌跡Γ的方程;
(Ⅱ)直線(xiàn)l:y=x-1與軌跡Γ相交于M、N兩點(diǎn),P為軌跡Γ的動(dòng)點(diǎn),求△PMN面積的最大值.

分析 (Ⅰ)設(shè)BE與CD交于G點(diǎn),則G為△ABC的重心,$BG=\frac{2}{3}BE,CG=\frac{2}{3}CD$,根據(jù)橢圓定理為橢圓方程.
(Ⅱ)設(shè)直線(xiàn)y=x+b,當(dāng)直線(xiàn)與橢圓相切時(shí),切點(diǎn)即為P,此時(shí)三角形面積最大$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=x+b\end{array}\right.,7{x^2}+8bx+4{b^2}-12=0$,因?yàn)橄嗲校省?0.列式求得面積最大值,并求得該值.

解答 解:(Ⅰ)設(shè)BE與CD交于G點(diǎn),則G為△ABC的重心,$BG=\frac{2}{3}BE,CG=\frac{2}{3}CD$…(2分)
由于|CD|+|BE|=6,則BG+CG=4,根據(jù)橢圓的定義,故G是以B,C為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓(除x軸上點(diǎn)外),$a=2,c=1,b=\sqrt{3}$…(4分)
即G滿(mǎn)足的軌跡方程為$\frac{x^2}{4}+\frac{y^2}{3}=1(y≠0)$…(6分)
(Ⅱ)設(shè)M(x1,y1),N(x2,y2),由$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=x-1\end{array}\right.$得到7x2-8x-8=0,得到${x_1}+{x_2}=\frac{8}{7},{x_1}{x_2}=-\frac{8}{7}$…(8分)
$MN=\sqrt{1+1}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}=\frac{24}{7}$…(10分)
設(shè)直線(xiàn)y=x+b,當(dāng)直線(xiàn)與橢圓相切時(shí),切點(diǎn)即為P,此時(shí)三角形面積最大$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=x+b\end{array}\right.,7{x^2}+8bx+4{b^2}-12=0$,因?yàn)橄嗲,故?0
64b2-28(4b2-12)=0,b2=7,$b=\sqrt{7},b=-\sqrt{7}$(舍)  …(12分)$x=-\frac{{4\sqrt{7}}}{7},y=\frac{{3\sqrt{7}}}{7},P(-\frac{{4\sqrt{7}}}{7},\frac{{3\sqrt{7}}}{7})$
 h=|$\frac{-\frac{4\sqrt{7}}{7}-\frac{3\sqrt{7}}{7}-1}{\sqrt{2}}$|=$\frac{\sqrt{14}+\sqrt{2}}{2}$…(14分)
${S_{max}}=\frac{1}{2}MN•h=\frac{1}{2}•\frac{24}{7}•\frac{{\sqrt{14}+\sqrt{2}}}{2}=\frac{{6(\sqrt{14}+\sqrt{2})}}{7}$…(15分)
備注:也可以用兩平行線(xiàn)距離公式d=$\frac{|\sqrt{7}+1|}{\sqrt{2}}=\frac{\sqrt{14}+\sqrt{2}}{2}$

點(diǎn)評(píng) 本題主要考查了軌跡方程的求解方法和直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=an•($\sqrt{3}$)${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.記直線(xiàn)x-3y-1=0的傾斜角為α,曲線(xiàn)y=lnx在(2,ln2)處切線(xiàn)的傾斜角為β.則α-β=-arctan$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)它的離心率為$\frac{1}{2}$,一個(gè)焦點(diǎn)是(-1,0),過(guò)直線(xiàn)x=4上一點(diǎn)引橢圓E的兩條切線(xiàn),切點(diǎn)分別是A、B.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若在橢圓E$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(diǎn)(x0,y0)處的切線(xiàn)方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1.求證:直線(xiàn)AB恒過(guò)定點(diǎn)C,并求出定點(diǎn)C的坐標(biāo);
(Ⅲ)求證:|AC|+|BC|=$\frac{4}{3}$|AC|•|BC|(點(diǎn)C為直線(xiàn)AB恒過(guò)的定點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)與拋物線(xiàn)x2=4$\sqrt{3}$y的焦點(diǎn)重合,F(xiàn)1與F2分別是該橢圓的左右焦點(diǎn),離心率e=$\frac{1}{2}$,且過(guò)橢圓右焦點(diǎn)F2的直線(xiàn)l與橢圓C交于M、N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,其中O為坐標(biāo)原點(diǎn),求直線(xiàn)l的方程;
(Ⅲ)若AB是橢圓C經(jīng)過(guò)原點(diǎn)O的弦,且MN∥AB,判斷$\frac{|AB{|}^{2}}{|MN|}$是否為定值?若是定值,請(qǐng)求出,若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的下頂點(diǎn)為P(0,-1),P到焦點(diǎn)的距離為$\sqrt{2}$.
(Ⅰ)設(shè)Q是橢圓上的動(dòng)點(diǎn),求|PQ|的最大值;
(Ⅱ)若直線(xiàn)l與圓O:x2+y2=1相切,并與橢圓C交于不同的兩點(diǎn)A、B.當(dāng)$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,且滿(mǎn)足$\frac{2}{3}$≤λ≤$\frac{3}{4}$時(shí),求△AOB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,直線(xiàn)l:x-y+2=0與以右焦點(diǎn)F為圓心,橢圓E的長(zhǎng)半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線(xiàn)l0,使得直線(xiàn)l0和橢圓E相切,切點(diǎn)在第一象限,且截圓F所得弦長(zhǎng)為4?若存在,試求l0的直線(xiàn)方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知結(jié)論:“在△ABC中,各邊和它所對(duì)角的正弦比相等,即$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$”,若把該結(jié)論推廣到空間,則有結(jié)論:“在三棱錐A-BCD中,側(cè)棱AB與平面ACD、平面BCD所成的角為α、β,則有( 。
A.$\frac{BC}{sinα}=\frac{AD}{sinβ}$B.$\frac{AD}{sinα}=\frac{BC}{sinβ}$
C.$\frac{{{S_{△BCD}}}}{sinα}=\frac{{{S_{△ACD}}}}{sinβ}$D.$\frac{{{S_{△ACD}}}}{sinα}=\frac{{{S_{△BCD}}}}{sinβ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過(guò)點(diǎn)A(-$\frac{{\sqrt{2}}}{2}$,$\frac{{\sqrt{3}}}{2}$),離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)F1,F(xiàn)2分別為其左右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若y2=4x上存在兩個(gè)點(diǎn)M,N,橢圓上有兩個(gè)點(diǎn)P,Q滿(mǎn)足,M,N,F(xiàn)2三點(diǎn)共線(xiàn),P,Q,F(xiàn)2三點(diǎn)共線(xiàn),且PQ⊥MN.求四邊形PMQN面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案