7.設(shè)集合S={x|(x-1)(x-3)≥0},T={x|x>0},則S∩T=(  )
A.[1,3]B.(-∞,1]∪[3,+∞)C.[3,+∞)D.(0,1]∪[3,+∞)

分析 求出S中不等式的解集確定出S,找出S與T的交集即可.

解答 解:由S中不等式解得:x≤1或x≥3,即S=(-∞,1]∪[3,+∞),
∵T=(0,+∞),
∴S∩T=(0,1]∪[3,+∞),
故選:D.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知i是虛數(shù)單位,且(z-3)i=2+i,則復(fù)數(shù)z的實(shí)數(shù)與虛部的和等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-5),x>2}\\{a{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}\right.$,若f(-2016)=e,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.經(jīng)過(guò)點(diǎn)(1,3)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程是y=3x或y=x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)為R上的奇函數(shù),f(-x+1)=f(x+1),且當(dāng)0≤x≤1時(shí),f(x)=$\sqrt{x}$,則 f(13.5)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}、{bn}滿足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{b_n}{1-a_n^2}$.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=$\frac{{{a_n}-a_n^2}}{{{2^n}({1-2{a_n}})({1-3{a_n}})}}$,求證:數(shù)列{cn}的前n項(xiàng)和Sn≥$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=|x|+|2x-3|,g(x)=3x2-2(m+1)x+$\frac{15}{4}$;
(1)求不等式f(x)≤6的解集;
(2)若對(duì)任意的x∈[-1,1],g(x)≥f(x),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x-1)的定義域是[-2,3],則f(2x-1)的定義域是( 。
A.$[-1,\frac{3}{2}]$B.$[0,\frac{5}{2}]$C.[-5,5]D.$[-\frac{1}{2},2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}中,a1=a(a為常數(shù)),其前n項(xiàng)和Sn滿足Sn=$\frac{n({a}_{n}+{a}_{3}-2)}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Sn≥S10對(duì)一切n∈N*都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案