【題目】在某互聯(lián)網(wǎng)大會(huì)上,為了提升安全級(jí)別,將5名特警分配到3個(gè)重要路口執(zhí)勤,每個(gè)人只能選擇一個(gè)路口,每個(gè)路口最少1人,最多3人,且甲和乙不能安排在同一個(gè)路口,則不同的安排方法有( )
A. 180種 B. 150種 C. 96種 D. 114種
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,給出如下命題:
①是所在平面內(nèi)一定點(diǎn),且滿足,則是的垂心;
②是所在平面內(nèi)一定點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)一定過的重心;
③是內(nèi)一定點(diǎn),且,則;
④若且,則為等邊三角形,
其中正確的命題為_____(將所有正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),為曲線上的動(dòng)點(diǎn),動(dòng)點(diǎn)滿足(且),點(diǎn)的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸的極坐標(biāo)系中, 點(diǎn)的極坐標(biāo)為,射線與的異于極點(diǎn)的交點(diǎn)為,已知面積的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于命題:存在一個(gè)常數(shù),使得不等式對(duì)任意正數(shù),恒成立.
(1)試給出這個(gè)常數(shù)的值;
(2)在(1)所得結(jié)論的條件下證明命題;
(3)對(duì)于上述命題,某同學(xué)正確地猜想了命題:“存在一個(gè)常數(shù),使得不等式對(duì)任意正數(shù),,恒成立.”觀察命題與命題的規(guī)律,請(qǐng)猜想與正數(shù),,,相關(guān)的命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}都是單調(diào)遞增數(shù)列,若將這兩個(gè)數(shù)列的項(xiàng)按由小到大的順序排成一列(相同的項(xiàng)視為一項(xiàng)),則得到一個(gè)新數(shù)列{cn}.
(1)設(shè)數(shù)列{an},{bn}分別為等差、等比數(shù)列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)設(shè){an}的首項(xiàng)為1,各項(xiàng)為正整數(shù),bn=3n , 若新數(shù)列{cn}是等差數(shù)列,求數(shù)列{cn} 的前n項(xiàng)和Sn;
(3)設(shè)bn=qn﹣1(q是不小于2的正整數(shù)),c1=b1 , 是否存在等差數(shù)列{an},使得對(duì)任意的n∈N* , 在bn與bn+1之間數(shù)列{an}的項(xiàng)數(shù)總是bn?若存在,請(qǐng)給出一個(gè)滿足題意的等差數(shù)列{an};若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.
圖231
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另1天的日銷售量低于50個(gè)的概率;
(2)用X表示在未來3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,點(diǎn)為曲線上任意一點(diǎn)且滿足
(1)求曲線的方程;
(2)設(shè)曲線與 軸交于兩點(diǎn),點(diǎn)是曲線上異于的任意一點(diǎn),直線分別交直線:于點(diǎn),試問軸上是否存在一個(gè)定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究黏蟲孵化的平均溫度(單位:)與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過試驗(yàn)得到以下6組數(shù)據(jù):
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖:
經(jīng)過計(jì)算,,,.
(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個(gè)模型?(給出判斷即可,不必說明理由)
(2)殘差絕對(duì)值大于1的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到).
參考公式:線性回歸方程中,,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com