【題目】一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.

圖231

將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.

(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另1天的日銷售量低于50個(gè)的概率;

(2)用X表示在未來3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望E(X)及方差D(X).

【答案】(1)0.108.(2) 見解析.

【解析】試題分析:(1)設(shè)表示事件日銷售量不低于100個(gè), 表示事件日銷售量低于50個(gè),B表示事件在未來連續(xù)3天里有連續(xù)2天日銷售量不低于100個(gè)且另一天的日銷售量低于50個(gè)”.因此

可求出, ,利用事件的獨(dú)立性即可求出;(2)由題意可知X~B(3,0.6),所以即可列出分布列,求出期望為E(X)和方差DX)的值.

1)設(shè)表示事件日銷售量不低于100個(gè), 表示事件日銷售量低于50個(gè),B表示事件在未來連續(xù)3天里有連續(xù)2天日銷售量不低于100個(gè)且另一天的日銷售量低于50個(gè)”.因此

.

.

.

2X的可能取值為0,1,2,3.相應(yīng)的概率為

,

,

,

,

分布列為

X

0

1

2

3

P

0.064

0.288

0.432

0.216

因?yàn)?/span>X~B(3,0.6),所以期望為E(X)=3×0.6=1.8,方差DX=3×0.6×1-0.6=0.72

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2|x+1|+|x﹣a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函數(shù)f(x)的最小值為3,求實(shí)數(shù) a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的首項(xiàng)a1=1,且滿足a2n+1=2a2n1與a2n=a2n1+1,則S20=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某互聯(lián)網(wǎng)大會(huì)上,為了提升安全級(jí)別,將5名特警分配到3個(gè)重要路口執(zhí)勤,每個(gè)人只能選擇一個(gè)路口,每個(gè)路口最少1人,最多3人,且甲和乙不能安排在同一個(gè)路口,則不同的安排方法有(

A. 180 B. 150 C. 96 D. 114

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次函數(shù)的最大值為,其圖象的對(duì)稱軸為,且與軸兩個(gè)交點(diǎn)的橫坐標(biāo)的平方和為.

1)求該一元二次函數(shù);

2)要將該函數(shù)圖象的頂點(diǎn)平移到原點(diǎn),請(qǐng)說出平移的方式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),則下列說法不正確的是( )

A.其圖象開口向上,且始終與軸有兩個(gè)不同的交點(diǎn)

B.無論取何實(shí)數(shù),其圖象始終過定點(diǎn)

C.其圖象對(duì)稱軸的位置沒有確定,但其形狀不會(huì)因的取值不同而改變

D.函數(shù)的最小值大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,,為線段上的一點(diǎn),且,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】, ,的內(nèi)心,,其中,動(dòng)點(diǎn)的軌跡所覆蓋的面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,曲線處的切線方程為

(Ⅰ)求的解析式;

(Ⅱ)若對(duì),恒有成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案