8.設Sn是等差數(shù)列{an}的前n項和,且滿足等式S7=a5+a6+a8+a9,則$\frac{{a}_{7}}{{a}_{4}}$的值為( 。
A.$\frac{7}{4}$B.$\frac{4}{7}$C.$\frac{7}{8}$D.$\frac{8}{7}$

分析 根據(jù)題意,等差數(shù)列{an}中,有S7=a5+a6+a8+a9,=4a7,進而由等差數(shù)列前n項和公式可得S7=$\frac{({a}_{1}+{a}_{7})×7}{2}$=7a4,則易求$\frac{{a}_{7}}{{a}_{4}}$的值.

解答 解:∵S7=$\frac{({a}_{1}+{a}_{7})×7}{2}$=7a4,a5+a6+a8+a9=4a7
∴7a4=4a7,
∴$\frac{{a}_{7}}{{a}_{4}}$=$\frac{7}{4}$.
故選:A.

點評 本題考查等差數(shù)列的前n項和的性質,解題的關鍵是正確運用等差數(shù)列的性質以及前n項和公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知二次函數(shù)f(x)=cx2-4x+a+1的值域是[1,+∞),則$\frac{1}{a}+\frac{9}{c}$的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若(2x-1)2016=a0+a1x+…+a2016x2016(x∈R),則$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2016}}{{2}^{2016}{a}_{1}}$=(  )
A.-$\frac{1}{2015}$B.$\frac{1}{2016}$C.-$\frac{1}{4030}$D.$\frac{1}{4032}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若關于x的不等式xex-ax+a<0的解集為(m,n)(n<0),且(m,n)中只有一個整數(shù),則實數(shù)a的取值范圍是(  )
A.[$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)B.[$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)C.[$\frac{1}{{e}^{2}}$,$\frac{2}{e}$)D.[$\frac{2}{3{e}^{2}}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知{an}是等差數(shù)列,且a1,a2,a5成等比數(shù)列,a3+a4=12.
(1)求a1+a2+a3+a4+a5;
(2)設bn=10-an,數(shù)列{bn}的前n項和為Sn,若b1≠b2,則n為何值時,Sn最大?Sn最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)為奇函數(shù),且當x>0時,f(x)=$\sqrt{x}$-$\frac{2}{x}$,則f(-4)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x|x>1},B={x|x2-2x<0},則(∁RA)∩B=( 。
A.(0,1)B.[0,1]C.(0,1]D.[0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.對任意非零實數(shù)a,b,若a?b的運算原理如圖所示,則(log2$\frac{1}{8}$)?($\frac{1}{3}$)-2=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.將函數(shù)f(x)=sin2x的圖象向左平移$\frac{π}{6}$個單位后與函數(shù)g(x)的圖象重合,則函數(shù)g(x)為(  )
A.$sin(2x-\frac{π}{6})$B.$sin(2x+\frac{π}{6})$C.$sin(2x-\frac{π}{3})$D.$sin(2x+\frac{π}{3})$

查看答案和解析>>

同步練習冊答案