18.已知二次函數(shù)f(x)=cx2-4x+a+1的值域是[1,+∞),則$\frac{1}{a}+\frac{9}{c}$的最小值是(  )
A.1B.2C.3D.4

分析 判斷拋物線的開口方向,利用二次函數(shù)的最小值,推出a,c的關(guān)系式,然后利用基本不等式即可求解最值.

解答 解:∵二次函數(shù)f(x)=cx2-4x+a+1的值域是[1,+∞),開口向上,
∴c>0且$\frac{4c(a+1)-16}{4c}$=1,即ac=4;
∴a>0,
∴$\frac{1}{a}$+$\frac{9}{c}$≥2$\sqrt{\frac{1}{a}•\frac{9}{c}}$=3,當且僅當$\frac{1}{a}$=$\frac{9}{c}$時取等號,
又ac=4,c=6,a=$\frac{2}{3}$;
∴$\frac{1}{a}$+$\frac{9}{c}$的最小值為3.
故選:C.

點評 本題主要考查了二次函數(shù)的性質(zhì)的應(yīng)用,基本不等式求解函數(shù)的最值等知識的綜合應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.點M(π,-m)在函數(shù)y=cosx-1的圖象上,則m的值為( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為45°,且|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2$\sqrt{2}$,若($\overrightarrow{a}$+λ$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則實數(shù)λ的值為( 。
A.-1B.-3C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.根據(jù)下列條件求雙曲線的標準方程.   
(1)已知雙曲線的漸近線方程為y=±$\frac{2}{3}$x,且過點M($\frac{9}{2}$,-1);
(2)與橢圓$\frac{x^2}{49}$+$\frac{y^2}{24}$=1有公共焦點,且離心率e=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在正四面體ABCD中,E是BC邊的中點,則AE與BD所成角的余弦值為$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.數(shù)列{an}滿足${a_1}=\frac{3}{2}$,${a_{n+1}}=a_n^2-{a_n}+1$,則$T=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2016}}}}$的整數(shù)部分是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè){an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列(n∈N*),且a1=1,b1=3,已知a2+b3=30,a3+b2=14.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=(an+1)•bn,Tn=c1+c2+…+cn,(n∈N*),求證:Tn=$\frac{3}{2}$(anbn+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow$=($\sqrt{3}$,1),則cos<$\overrightarrow{a}$,$\overrightarrow$>=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)Sn是等差數(shù)列{an}的前n項和,且滿足等式S7=a5+a6+a8+a9,則$\frac{{a}_{7}}{{a}_{4}}$的值為( 。
A.$\frac{7}{4}$B.$\frac{4}{7}$C.$\frac{7}{8}$D.$\frac{8}{7}$

查看答案和解析>>

同步練習冊答案