10.過棱長為1的正方體的一個頂點作該正方體的截面,若截面形狀為四邊形,則下列選項中不可能為該截面面積的是( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

分析 設(shè)過頂點A作正方體的截面AEFG與底面ABCD所成的角為θ,利用關(guān)系式:$\frac{{S}_{底面ABCD}}{{S}_{截面AEFG}}$=cosθ,得出S截面AEFG>1又當截面AEFG是正方體的對角面AB1C1D時,其面積最大,最大為$\sqrt{2}$,從而得到截面面積的取值范圍.

解答 解;如圖所示,
,
設(shè)過頂點A作正方體的截面AEFG與底面ABCD所成的角為θ,
則有:$\frac{{S}_{底面ABCD}}{{S}_{截面AEFG}}$=cosθ,
∴S截面AEFG=$\frac{{S}_{底面ABCD}}{cosθ}$>1,
又當截面AEFG是正方體的對角面AB1C1D時,其面積最大,最大為$\sqrt{2}$,
則截面面積的取值范圍是 (1,$\sqrt{2}$].
故選:D

點評 本小題主要考查棱柱的結(jié)構(gòu)特征、正方體的結(jié)構(gòu)特征的應(yīng)用、正方體的截面等基礎(chǔ)知識,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-x.
(1)求曲線y=f(x)在點M(1,0)處的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=4,AB=2AA1,M是AB的中點,△A1MC1是等腰三角形,D為CC1的中點,E為BC上一點.
(1)若DE∥平面A1MC1,求$\frac{BE}{EC}$;
(2)平面BCC1B1與平面A1MC1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$≡(1,x),$\overrightarrow$=(2x+3,x),x∈R.
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow$,求x的值
(Ⅱ)若$\overrightarrow{a}$$∥\overrightarrow$,求|$\overrightarrow{a}$$-\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.${∫}_{1}^{2}$($\sqrt{1-(x-1)^{2}}$)dx=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.正方體的截面不可能是:①鈍角三角形;②直角三角形;③菱形;④正五邊形;⑤正六邊形.下述選項正確的是( 。
A.①②⑤B.①②④C.②③④D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知3a=5b=A,且$\frac{1}{a}$+$\frac{1}$=2,則A的值是( 。
A.15B.$\sqrt{15}$C.±$\sqrt{15}$D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.不等式2x2-5x+2>0的解集為{x|x<$\frac{1}{2}$或x>2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在空間直角坐標系Oxyz中,點A(a,a,a),B(a,a,0),C(0,0,a).其中a>0,則△ABC為(  )
A.直角三角形B.等腰直角三角形C.正三角形D.鈍角三角形

查看答案和解析>>

同步練習(xí)冊答案