【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中.

(1)求證:AC⊥平面B1BDD1
(2)求三棱錐B﹣ACB1體積.

【答案】
(1)證明:∵DD1⊥面ABCD∴AC⊥DD1

又∵BD⊥AC,

且DD1,BD是平面B1BD1D上的兩條相交直線

∴AC⊥平面B1BDD1


(2)解: =
【解析】【(1)要證AC⊥平面B1BDD1 , 只需證明AC垂直平面B1BD1D上的兩條相交直線DD1 , BD;即可.(2)求三棱錐B﹣ACB1體積.轉化為B1﹣ABC的體積,直接求解即可.
【考點精析】本題主要考查了直線與平面垂直的判定的相關知識點,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷并用定義證明函數(shù)的奇偶性;
(2)判斷并用定義證明函數(shù)在(﹣∞,0)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線與曲線恰好相切于點,求實數(shù)的值;

(2)當時,恒成立,求實數(shù)的取值范圍;

(3)求證:. .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù) ,看下面四個結論( ) ①f(x)是奇函數(shù);②當x>2007時, 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正確結論的個數(shù)為:
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩平行直線4x﹣2y+7=0,2x﹣y+1=0之間的距離等于坐標原點O到直線l:x﹣2y+m=0的距離的一半.
(1)求m的值;
(2)判斷直線l與圓 的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過A(3,2)、B(1,6),且圓心在直線y=2x上.
(1)求圓C的方程.
(2)若直線l經(jīng)過點P(﹣1,3)與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,我國許多省市霧霾天氣頻發(fā),為增強市民的環(huán)境保護意識,某市面向全市征召名義務宣傳志愿者,成立環(huán)境保護宣傳組織,現(xiàn)把該組織的成員按年齡分成組第,第,第,第,第,得到的頻率分布直方圖如圖所示,已知第組有人.

(1)求該組織的人數(shù);

(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動,應從第組各抽取多少名志愿者?

(3)在(2)的條件下,該組織決定在這名志愿者中隨機抽取名志愿者介紹宣傳經(jīng)驗,求第組至少有名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= .(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結論;
(2)若當x>0時,f(x)> 恒成立,求正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究所計劃利用“神十”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預計產(chǎn)生的收益來決定具體搭載安排,有關數(shù)據(jù)如下表:

每件產(chǎn)品A

每件產(chǎn)品B

研制成本、搭載
費用之和(萬元)

20

30

計劃最大資金額
300萬元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預計收益(萬元)

80

60

分別用x,y表示搭載新產(chǎn)品A,B的件數(shù).總收益用Z表示
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出相應的平面區(qū)域;

(2)問分別搭載新產(chǎn)品A、B各多少件,才能使總預計收益達到最大?并求出此最大收益.

查看答案和解析>>

同步練習冊答案