【題目】已知、是橢圓上不同的兩點(diǎn),的中點(diǎn)坐標(biāo)為

1)證明:直線經(jīng)過(guò)橢圓的右焦點(diǎn).

2)設(shè)直線不經(jīng)過(guò)點(diǎn)且與橢圓相交于,兩點(diǎn),若直線與直線的斜率的和為1,試判斷直線是否經(jīng)過(guò)定點(diǎn),若經(jīng)過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn);若不經(jīng)過(guò)定點(diǎn),請(qǐng)給出理由.

【答案】1)證明見(jiàn)解析;(2)過(guò)定點(diǎn);.

【解析】

1)根據(jù)已知用點(diǎn)差法求出直線的斜率,即可證明結(jié)論;

2)先考慮直線斜率存在情況,設(shè)直線的方程為,直線要過(guò)定點(diǎn),只需求出為定值或確定關(guān)系,聯(lián)立直線方程與橢圓方程,根據(jù)根與系數(shù)關(guān)系以及直線與直線的斜率的和為1,可得關(guān)系,得出定點(diǎn),再求出直線斜率不存在時(shí)方程即可.

1)由題知,,設(shè),

的中點(diǎn)坐標(biāo)為,所以,

,兩式相減,

,

又因?yàn)?/span>,所以直線經(jīng)過(guò)橢圓的右焦點(diǎn).

2)當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,

設(shè),

所以,,

又因?yàn)?/span>,所以,

,

所以,化簡(jiǎn)得

所以,又因?yàn)?/span>,所以

所以直線的方程為,

經(jīng)檢驗(yàn),符合題意,所以直線過(guò)定點(diǎn),

又當(dāng)直線斜率不存在時(shí),直線的方程為,

,又因?yàn)?/span>,

解得,也過(guò)點(diǎn)

綜上知,直線過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù),函數(shù)

1)當(dāng)函數(shù)時(shí)為減函數(shù),求a的范圍;

2)若a=e(e為自然對(duì)數(shù)的底數(shù));

求函數(shù)g(x)的單調(diào)區(qū)間;

證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,并增加學(xué)生們對(duì)古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計(jì)劃建設(shè)一個(gè)古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計(jì)調(diào)查.統(tǒng)計(jì)顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44.

(1)能否在犯錯(cuò)誤的概率不超過(guò)0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?

(2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書(shū)籍,語(yǔ)文教研組計(jì)劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會(huì).經(jīng)過(guò)綜合考慮與對(duì)比,語(yǔ)文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.

(1)求證:數(shù)列為等比數(shù)列;

2)設(shè)數(shù)列的前項(xiàng)和為,求證: 為定值;

3)判斷數(shù)列中是否存在三項(xiàng)成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:橢圓的焦距為2,且經(jīng)過(guò)點(diǎn)是橢圓上異于的兩個(gè)動(dòng)點(diǎn).

1)求橢圓的方程;

2)若,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃梅時(shí)節(jié)家家雨”“梅雨如煙暝村樹(shù)”“梅雨暫收斜照明”…江南梅雨的點(diǎn)點(diǎn)滴滴都流露著濃烈的詩(shī)情.每年六、七月份,我國(guó)長(zhǎng)江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南鎮(zhèn)20092018年梅雨季節(jié)的降雨量(單位:)的頻率分布直方圖,試用樣本頻率估計(jì)總體概率,解答下列問(wèn)題:

1)計(jì)算的值,并用樣本平均數(shù)估計(jì)鎮(zhèn)明年梅雨季節(jié)的降雨量;

2鎮(zhèn)的楊梅種植戶老李也在犯愁,他過(guò)去種植的甲品種楊梅,畝產(chǎn)量受降雨量的影響較大(把握超過(guò)八成).而乙品種楊梅這10年的畝產(chǎn)量(/畝)與降雨量的發(fā)生頻數(shù)(年)如列聯(lián)表所示(部分?jǐn)?shù)據(jù)缺失).請(qǐng)你完善列聯(lián)表,幫助老李排解憂愁,試想來(lái)年應(yīng)種植哪個(gè)品種的楊梅受降雨量影響更?并說(shuō)明理由.

畝產(chǎn)量\降雨量

200400之間

200400之外

合計(jì)

2

1

合計(jì)

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意,任意,不等式恒成立時(shí)最大的記為,當(dāng)時(shí),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,其焦距為,點(diǎn)在橢圓上,,直線的斜率為為半焦距)·

1)求橢圓的方程;

2)設(shè)圓的切線交橢圓兩點(diǎn)(為坐標(biāo)原點(diǎn)),求證:;

3)在(2)的條件下,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201941021時(shí)整,全球六地(上海和臺(tái)北、布魯塞爾、圣地亞哥、東京和華盛頓同時(shí)召開(kāi)新聞發(fā)布會(huì),宣布人類首次利用虛擬射電望遠(yuǎn)鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個(gè)中心為黑色的明亮環(huán)狀結(jié)構(gòu),看上去有點(diǎn)像個(gè)橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉(zhuǎn)的吸積盤(pán).某同學(xué)作了一張黑洞示意圖,如圖所示,由兩個(gè)同心圓和半個(gè)同心圓環(huán)構(gòu)成圓及圓環(huán)的半徑從內(nèi)到外依次為2,3,4,5個(gè)單位在圖中隨機(jī)任取一點(diǎn),則該點(diǎn)取自陰影的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案