分析 (1)利用等差數(shù)列的通項(xiàng)公式列方程解出{an}的首項(xiàng)和公差,從而得出通項(xiàng)an;
(2)先計(jì)算Sn,令n=1計(jì)算b1,再令n≥2,作差得出bn即可.
解答 解:(1)設(shè){an}的公差為d,∵a3=6,a9=18
∴$\left\{\begin{array}{l}{{a}_{1}+2d=6}\\{{a}_{1}+8d=18}\end{array}\right.$,解得a1=2,d=2,
∴an=2+2(n-1)=2n.
(2)Sn=$\frac{{a}_{1}+{a}_{n}}{2}•n$=n2+n,
當(dāng)n=1時(shí),a1b1=-S1=-a1,∴b1=-1.
當(dāng)n≥2時(shí),
∵a1b1+a2b2+…+anbn=(2n-3)Sn=n(n+1)(2n-3),
∴a1b1+a2b2+…+an-1bn-1=(2n-5)Sn-1=n(n-1)(2n-5),
∴anbn=n(n+1)(2n-3)-n(n-1)(2n-5)=2n(3n-4),
∴bn=$\frac{2n(3n-4)}{{a}_{n}}$=3n-4,
顯然當(dāng)n=1時(shí),上式仍成立,
∴bn=3n-4.
點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì),數(shù)列通項(xiàng)的求法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $-\root{4}{2}$ | D. | $\root{4}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (8,1) | B. | (8,3) | C. | (-1,8) | D. | (7,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com