A. | $-\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $-\root{4}{2}$ | D. | $\root{4}{2}$ |
分析 三邊a,b,c成等差數(shù)列,可得2b=a+c,利用正弦定理可得:2sinB=sinA+sinC,即sinA+sinC=$\sqrt{2}$,設(shè)cosA-cosC=m,平方相加即可得出.
解答 解:∵三邊a,b,c成等差數(shù)列,
∴2b=a+c,
利用正弦定理可得:2sinB=sinA+sinC,
∴sinA+sinC=2sin$\frac{π}{4}$=$\sqrt{2}$,
設(shè)cosA-cosC=m,
則平方相加可得:2-2cos(A+C)=2+m2,
∴m2=2cosB=$\sqrt{2}$,
解得m=±$\root{4}{2}$.
∵a,b,c成遞減的等差數(shù)列,
∴m=-$\root{4}{2}$.
故選:C.
點評 本題考查了等差數(shù)列的通項公式性質(zhì)、正弦定理、同角三角函數(shù)基本關(guān)系式、和差公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0) | B. | (-1,0) | C. | (-1,1) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com