18.在數(shù)列{an}中,an=cos$\frac{π}{3×{2}^{n-2}}$(n∈N*
(1)試將an+1表示為an的函數(shù)關(guān)系式;
(2)若數(shù)列{bn}滿足bn=1-$\frac{2}{n•n!}$(n∈N*),猜想an與bn的大小關(guān)系,并證明你的結(jié)論.

分析 (1)利用數(shù)列的通項(xiàng)公式化簡求解遞推關(guān)系式即可.
(2)通過當(dāng)n=1時(shí),當(dāng)n=2時(shí),當(dāng)n=3時(shí),計(jì)算結(jié)果猜想:當(dāng)n≥3時(shí),an<bn,然后利用數(shù)學(xué)歸納法的坐標(biāo)方法證明即可.

解答 解:(1)${a_n}=cos\frac{π}{{3×{2^{n-2}}}}$=$cos\frac{2π}{{3×{2^{n-1}}}}$═$2{({cos\frac{π}{{3×{2^{n-1}}}}})^2}-1$∴${a_n}=2{a_{n+1}}^2-1$
∴${a_{n+1}}=±\sqrt{\frac{{{a_n}+1}}{2}}$
又n∈N*,n+1≥2,an+1>0∴${a_{n+1}}=\sqrt{\frac{{{a_n}+1}}{2}}$…(3分)
(2)當(dāng)n=1時(shí),${a_1}=-\frac{1}{2}$,b1=1-2=-1,∴a1>b1
當(dāng)n=2時(shí),${a_2}=\frac{1}{2}$,${b_2}=1-\frac{1}{2}=\frac{1}{2}$,∴a2=b2
當(dāng)n=3時(shí),${a_3}=\frac{{\sqrt{3}}}{2}$,${b_3}=1-\frac{1}{9}=\frac{8}{9}$,∴a3<b3…(4分)
猜想:當(dāng)n≥3時(shí),an<bn,…(5分)
下面用數(shù)學(xué)歸納法證明:
證:①當(dāng)n=3時(shí),由上知,a3<b3,結(jié)論成立.
②假設(shè)n=k,k≥3,n∈N*時(shí),ak<bk成立,即${a_k}<1-\frac{2}{k•k!}$
則當(dāng)n=k+1,${a_{k+1}}=\sqrt{\frac{{{a_k}+1}}{2}}$$<\sqrt{\frac{{2-\frac{2}{k•k!}}}{2}}$=$\sqrt{1-\frac{1}{k•k!}}$,${b_{k+1}}=1-\frac{2}{{({k+1})•({k+1})!}}$
要證ak+1<bk+1,即證明${({\sqrt{1-\frac{1}{k•k!}}})^2}$$<{({1-\frac{2}{{({k+1})•({k+1})!}}})^2}$
即證明$1-\frac{1}{k•k!}$$<1-\frac{4}{{({k+1})•({k+1})!}}+{({\frac{2}{{({k+1})•({k+1})!}}})^2}$
即證明$\frac{1}{k•k!}-\frac{4}{{({k+1})•({k+1})!}}+{({\frac{2}{{({k+1})•({k+1})!}}})^2}>0$
即證明$\frac{{{{({k-1})}^2}}}{{k({k+1})•({k+1})!}}+{({\frac{2}{{({k+1})•({k+1})!}}})^2}>0$,顯然成立.
∴n=k+1時(shí),結(jié)論也成立.
綜合①②可知:當(dāng)n≥3時(shí),an<bn成立.
綜上可得:當(dāng)n=1時(shí),a1>b1;當(dāng)n=2時(shí),a2=b2
當(dāng)n≥3,n∈N*時(shí),an<bn   …(10分)

點(diǎn)評 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)學(xué)歸納法的應(yīng)用,考查邏輯推理能力以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,李先生家住H小區(qū),他工作在C處科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個(gè)路口,各路口遇到紅燈的概率均為$\frac{1}{2}$;L2路線上有B1、B2兩個(gè)路口,各路口遇到紅燈的概率依次為$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L2路線,求遇到紅燈次數(shù)X的分布列和數(shù)學(xué)期望;
(2)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在R上的增函數(shù)y=f(x)滿足f(x)+f(4-x)=0,若實(shí)數(shù)a、b滿足不等式f(a)+f(b)≥0,則a2+b2的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.第96屆(春季)全國糖酒商品交易會(huì)于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會(huì)前查閱了最近5次交易會(huì)的參會(huì)人數(shù)x(萬人)與餐廳所用原材料數(shù)量y(袋),得到如下數(shù)據(jù):
第一次第二次第三次第四次第五次
參會(huì)人數(shù)x(萬人)11981012
原材料t(袋)2823202529
(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會(huì)大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補(bǔ)充原材料多少袋?
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.隨著社會(huì)的發(fā)展,食品安全問題漸漸成為社會(huì)關(guān)注的熱點(diǎn),為了提高學(xué)生的食品安全意識(shí),某學(xué)校組織全校學(xué)生參加食品安全知識(shí)競賽,成績的頻率分布直方圖如圖所示,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100),若該校的學(xué)生總?cè)藬?shù)為3000,則成績不超過60分的學(xué)生人數(shù)大約為900.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)=\frac{sinx}{{2{e^x}}}$的圖象的大致形狀是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.二元線性方程組$\left\{\begin{array}{l}{x+5y=0}\\{2x+3y=4}\end{array}\right.$的系數(shù)矩陣D=( 。
A.$(\begin{array}{l}{0}&{5}\\{3}&{4}\end{array})$B.$(\begin{array}{l}{1}&{0}\\{2}&{3}\end{array})$C.$(\begin{array}{l}{1}&{5}\\{2}&{3}\end{array})$D.$(\begin{array}{l}{1}&{0}\\{2}&{4}\end{array})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.調(diào)查某學(xué)校學(xué)生的課外活動(dòng)情況,制成等高條形圖如圖所示,則有較大把握判斷:該校學(xué)生課外喜歡體育活動(dòng)還是文娛活動(dòng)與性別有(填“有”或“無”)關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將1個(gè)半徑為1的小鐵球與1個(gè)底面周長為2π,高4的鐵制圓柱重新鍛造成一個(gè)大鐵球,則該大鐵球的表面積為8$\root{3}{2}$π.

查看答案和解析>>

同步練習(xí)冊答案