13.已知log23=a,log35=b,則lg6=( 。
A.$\frac{1}{1+ab}$B.$\frac{a}{1+ab}$C.$\frac{1+ab}$D.$\frac{a+1}{1+ab}$

分析 由已知結(jié)合對數(shù)的換底公式求得lg2及l(fā)g3的值,再由對數(shù)的運算性質(zhì)求得lg6.

解答 解:∵log23=a,log35=b,
∴$\frac{lg3}{lg2}=a$,$\frac{lg5}{lg3}=\frac{1-lg2}{lg3}=b$,
解得:$lg2=\frac{1}{1+ab},lg3=\frac{a}{1+ab}$,
∴l(xiāng)g6=$lg2+lg3=\frac{1}{1+ab}+\frac{a}{1+ab}=\frac{1+a}{1+ab}$.
故選:D.

點評 本題考查對數(shù)的運算性質(zhì),考查了換底公式的應用,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.i為虛數(shù)單位,計算$\frac{1-i}{2-i}$=$\frac{3}{5}$-$\frac{1}{5}$i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某企業(yè)參加A項目生產(chǎn)的工人為1000人,平均每人每年創(chuàng)造利潤10萬元.根據(jù)現(xiàn)實的需要,從A項目中調(diào)出x人參與B項目的售后服務工作,每人每年可以創(chuàng)造利潤10(a-$\frac{3x}{500}$)萬元(a>0),A項目余下的工人每年創(chuàng)造利潤需要提高0.2x%.
(1)若要保證A項目余下的工人創(chuàng)造的年總利潤不低于原來1000名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加B項目從事售后服務工作?
(2)在(1)的條件下,當從A項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的40%時,才能使得A項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示,在單位圓O中,∠AOH=α(0<α<$\frac{π}{2}$),若△AOH的面積記為S1,△BOC的面積記為S2,△AOC的面積為S3,扇形AOC的面積記為S4,則( 。
A.S1=$\frac{1}{2}$sinαB.S2=$\frac{1}{2}$tanαC.S3D.S4=$\frac{1}{2}$cosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在等差數(shù)列{an}中,a3+a4+a5+a6+a7=450.
(1)求a1+a9、a2+a8,并比較二者的大小;
(2)根據(jù)(1)的結(jié)論,寫出一個可能成立的等式,并證明之.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)在區(qū)間(0,π)上存在唯一一個x0∈(0,π),使得f(x0)=1,則ω的取值范圍為(  )
A.($\frac{1}{2}$,$\frac{11}{6}$]B.[$\frac{1}{2}$,$\frac{11}{6}$)C.($\frac{1}{3}$,$\frac{13}{6}$]D.[$\frac{1}{3}$,$\frac{13}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.化簡:$\frac{si{n}^{4}θ-co{s}^{4}θ}{si{n}^{2}θ-co{s}^{2}θ}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知數(shù)列{an}為等差數(shù)列,且公差d>0,數(shù)列{bn}為等比數(shù)列,若a1=b1>0,a4=b4,則(  )
A.a7>b7B.a7=b7
C.a7<b7D.a7與b7大小無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.$\frac{3+i}{1-i}$的虛部為( 。
A.2B.-2C.-2iD.2i

查看答案和解析>>

同步練習冊答案