數(shù)列{an}是公差不為零的等差數(shù)列,且a5,a8,a13是等比數(shù)列{bn}相鄰的三項,若b2=5,求bn
考點:等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)所給的三項是等差數(shù)列的三項,用第五項和公差表示出三項,根據(jù)這三項是等比數(shù)列的相鄰的三項,寫出等式,求出第五項和公差的關(guān)系,求出等比數(shù)列的公比,寫出等比數(shù)列的通項.
解答: 解:∵{an}是公差不為零的等差數(shù)列,并且a5,a8,a13是等比數(shù)列{bn}的相鄰三項.
∴(a5+3d)2=a5(a5+8d),
a5=
9
2
d

則q=
a5+3d
a5
=
15d
2
9d
2
=
5
3
,
bn=b2qn-2=5•(
5
3
)n-2
點評:本題考查了等差數(shù)列的通項公式,考查了等比數(shù)列的通項公式與性質(zhì),是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式mx2-2x+m-2<0.
①若對于所有的實數(shù)x不等式恒成立,求m的取值范圍.
②設(shè)不等式對于滿足|m|≤2的一切m的值都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(
3
sinx,cosx),向量
b
=(cosx,-cosx),記f(x)=
a
b
+
1
2

(1)寫出函數(shù)f(x)的最小正周期;
(2)若x∈[
π
6
π
2
]求函數(shù)f(x)的最大值及取得最大值時對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,點G為BC的中點.
(1)求證:直線OG∥平面EFCD;
(2)求證:直線AC⊥平面ODE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)導(dǎo)數(shù)的幾何意義,求函數(shù)y=
4-x2
在x=1處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)不等式|2x-1|<1的解集為M,且a∈M,b∈M,試比較ab+1與a+b的大。
(2)若a,b,c為正實數(shù)且滿足a+2b+3c=6,求
a+1
+
2b+1
+
3c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2
x
+ln
1
x-1
的零點所在的大致區(qū)間是( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(1,2)與(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將n2個數(shù)排成如下所示的正方形數(shù)陣:
a11      a12      a13       a14       a15
a21      a22      a23       a24       a25
a31      a32      a33       a34       a35
a41      a42      a43        a44       a35
a51      a52      a53       a54       a55

已知第一行a11,a12,a13,a14,a15,…成等差數(shù)列,而每一列a1j,a2j.a(chǎn)3j,a4j,a5j,…an(1≤j≤n)都成等比數(shù)列,且每個公比全相等.若a24=4,a41=-2,a43=10,則a11×a55的值為(  )
A、16B、-16
C、11D、-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x+1)2+(y+1)2=16上的點到直線3x-4y-2=0的距離的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案