【題目】已知橢圓Cab0)的焦距為2,且過點.

1)求橢圓C的方程;

2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標原點O為△BMN的重心,求點O到直線MN距離的最小值.

【答案】12

【解析】

1)由題意焦距的值可得c的值,再由橢圓過點,及a,b,c之間的關(guān)系求出ab的值,進而求出橢圓的方程;

2)分B的縱坐標為0和不為0兩種情況討論,設(shè)B的坐標,由O是三角形的重心可得MN的中點的坐標,設(shè)M,N的坐標,代入橢圓方程兩式相減可得直線MN的斜率,求出直線MN的方程,求出O到直線MN的距離的表達式,再由B的縱坐標的范圍求出d的取值范圍,進而求出d的最小值.

解:(1)由題意可得:橢圓的焦距為2,,又橢圓過點

,解得:a24b23,

所以橢圓的方程為:1

2)設(shè)B,記線段MN中點D,

因為OBMN的重心,所以2,則點D的坐標為:,

n0,則|m|2,此時直線MNx軸垂直,

故原點O到直線MN的距離為,即為1,

n0,此時直線MN的斜率存在,

設(shè)Mx1,y1),Nx2,y2),則x1+x2=﹣m,y1+y2=﹣n,

1,1,

兩式相減0

可得:kMN,

故直線MN的方程為:yx,即6mx+8ny+3m2+4n20,

則點O到直線MN的距離d

1,代入得d,

因為0n23,所以dmin,又1

故原點O到直線MN的距離的最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為1,E,F分別是,的中點,EF于點D,現(xiàn)沿SE,SFEF把這個正方形折成一個四面體,使,,三點重合,重合后的點記為G,則在四面體中必有(

A.平面EFG

B.設(shè)線段SF的中點為H,則平面SGE

C.四面體的體積為

D.四面體的外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為徹底打贏脫貧攻堅戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶種植蔬菜大棚脫貧致富,若該農(nóng)戶計劃種植冬瓜和茄子,總面積不超過15畝,幫扶資金不超過4萬元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價1.4元,則該農(nóng)戶種植冬瓜和茄子利潤的最大值為(

A.4萬元B.5.5萬元C.6.5萬元D.10萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè).

1)討論上的單調(diào)性;

2)令,試證明上有且僅有三個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程與曲線的直角坐標方程;

2)設(shè)為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一場突如其來的新冠肺炎疫情在全國蔓延,在黨中央的堅強領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國人民眾志成城、團結(jié)一心,共抗疫情。每天測量體溫也就成為了所有人的一項責任,一般認為成年人腋下溫度(單位:℃)平均在36℃~37℃之間即為正常體溫,超過37.1℃即為發(fā)熱。發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險):.

某位患者因發(fā)熱,雖排除肺炎,但也于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進行消炎退熱. 住院期間,患者每天上午8:00服藥,護士每天下午16:00為患者測量腋下體溫記錄如下:

抗生素使用情況

沒有使用

使用“抗生素A”治療

使用“抗生素B”治療

日期

12

13

14

15

16

17

18

19

體溫(℃)

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情況

使用“抗生素C”治療

沒有使用

日期

20

21

22

23

24

25

26

體溫(℃)

38.4

38.0

37.6

37.1

36.8

36.6

36.3

1)請你計算住院期間該患者體溫不低于39℃的各天體溫平均值;

2)在18日—22日期間,醫(yī)生會隨機選取3天在測量體溫的同時為該患者進行某一特殊項目“項目”的檢查,求至少兩天在高熱體溫下做“項目”檢查的概率;

3)抗生素治療一般在服藥后2-8個小時就能出現(xiàn)血液濃度的高峰,開始殺滅細菌,達到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某志愿者服務(wù)網(wǎng)站在線招募志愿者,當報名人數(shù)超過計劃招募人數(shù)時,將采用隨機抽取的方法招募志愿者,如表記錄了A,B,C,D四個項目最終的招募情況,其中有兩個數(shù)據(jù)模糊,記為a,b.

甲同學報名參加了這四個志愿者服務(wù)項目,記ξ為甲同學最終被招募的項目個數(shù),已知Pξ=0,Pξ=4.

(Ⅰ)求甲同學至多獲得三個項目招募的概率;

(Ⅱ)求a,b的值;

(Ⅲ)假設(shè)有十名報了項目A的志愿者(不包含甲)調(diào)整到項目D,試判斷Eξ如何變化(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為,其圖像相鄰的兩條對稱軸之間的距離為,且的圖像關(guān)于點對稱,則下列結(jié)論正確的是( .

A.函數(shù)的圖像關(guān)于直線對稱

B.時,函數(shù)的最小值為

C.,則的值為

D.要得到函數(shù)的圖像,只需要將的圖像向右平移個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】垃圾分類是對垃圾進行有效處置的一種科學管理方法,為了了解居民對垃圾分類的知曉率和參與率,引導(dǎo)居民積極行動,科學地進行垃圾分類,某小區(qū)隨機抽取年齡在區(qū)間上的50人進行調(diào)研,統(tǒng)計出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如下表:

年齡

頻數(shù)

5

10

10

15

5

5

了解

4

5

8

12

2

1

1)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為以65歲為分界點居民對了解垃圾分類的有關(guān)知識有差異;

年齡低于65歲的人數(shù)

年齡不低于65歲的人數(shù)

合計

了解

不了解

合計

2)若對年齡在的被調(diào)研人中各隨機選取2人進行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望

參考公式和數(shù)據(jù)

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案