【題目】已知函數(shù)f(x)x(ln xax)有兩個極值點,則實數(shù)a的取值范圍是(  )

A. (,0) B.

C. (0,1) D. (0,+∞)

【答案】B

【解析】由已知得f′(x)0有兩個正實數(shù)根x1x2(x1<x2),即f′(x)的圖象與x軸有兩個交點,從而得a的取值范圍.

f′(x)ln x12ax,依題意ln x12ax0有兩個正實數(shù)根x1,x2(x1<x2).設g(x)ln x12ax,函數(shù)g(x)ln x12ax有兩個零點,顯然當a≤0時不合題意,必有a>0g′(x)2a,令g′(x)0,得x,于是g(x)上單調遞增,在上單調遞減,所以g(x)x處取得極大值,

f′ln>0, >1,所以0<a<.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在極坐標系中,已直曲線,將曲線C上的點向左平移一個單位,然后縱坐標不變,橫坐標伸長到原來的2倍,得到曲線C1,又已知直線,且直線C1交于A、B兩點,

1求曲線C1的直角坐標方程,并說明它是什么曲線;

2)設定點, 求的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

)求曲線處的切線方程.

)求的單調區(qū)間.

)設,其中,證明:函數(shù)僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(xa)(xb)(其中ab),若f(x)的圖象如圖所示,則函數(shù)g(x)=axb的圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ex-ax-1.

(1)當a>0時,設函數(shù)f(x)的最小值為g(a),求證:g(a)≤0;

(2)求證:對任意的正整數(shù)n,都有1n+1+2n+1+3n+1+…+nn+1<(n+1)n+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是圓上任意一點,點與點關于原點對稱,線段的垂直平分線分別與,交于,兩點.

(1)求點的軌跡的方程;

(2)過點的動直線與點的軌跡交于,兩點,在軸上是否存在定點,使以為直徑的圓恒過這個點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來許多地市空氣污染較為嚴重,現(xiàn)隨機抽取某市一年(365天)內100天的空氣質量指數(shù)()的監(jiān)測數(shù)據,統(tǒng)計結果如表:

指數(shù)

空氣質量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

天數(shù)

4

13

18

30

20

15

記某企業(yè)每天由空氣污染造成的經濟損失為(單位:元),指數(shù)為.當在區(qū)間內時,對企業(yè)沒有造成經濟損失;當在區(qū)間內時,對企業(yè)造成的經濟損失與成直線模型(當指數(shù)為150時,造成的經濟損失為1100元,當指數(shù)為200時,造成的經濟損失為1400元);當指數(shù)大于300時,造成的經濟損失為2000元. 

(1)試寫出的表達式;

(2)試估計在本年內隨機抽取1天,該天經濟損失大于1100且不超過1700元的概率;

(3)若本次抽取的樣本數(shù)據有30天是在供暖季,這30天中有8天為嚴重污染,完成列聯(lián)表,并判斷是否有的把握認為該市本年度空氣嚴重污染與供暖有關?

非嚴重污染

嚴重污染

合計

供暖季

非供暖季

合計

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性;

(2)當時,若方程有兩個相異實根,且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,底面ABC為正三角形,EA⊥平面ABC,DC⊥平面ABC,EAAB=2DC=2a,設FEB的中點.

(1)求證:DF∥平面ABC;

(2)求直線AD與平面AEB所成角的正弦值.

查看答案和解析>>

同步練習冊答案