【題目】2020110日,中國工程院院士黃旭華和中國科學(xué)院院士曾慶存榮獲2019年度國家最高科學(xué)技術(shù)獎.曾慶存院士是國際數(shù)值天氣預(yù)報奠基人之一,他的算法是世界數(shù)值天氣預(yù)報核心技術(shù)的基礎(chǔ),在氣象預(yù)報中,過往的統(tǒng)計數(shù)據(jù)至關(guān)重要,如圖是根據(jù)甲地過去50年的氣象記錄所繪制的每年高溫天數(shù)(若某天氣溫達到35 ℃及以上,則稱之為高溫天)的頻率分布直方圖.若某年的高溫天達到15天及以上,則稱該年為高溫年,假設(shè)每年是否為高溫年相互獨立,以這50年中每年高溫天數(shù)的頻率作為今后每年是否為高溫年的概率.

1)求今后4年中,甲地至少有3年為高溫年的概率.

2)某同學(xué)在位于甲地的大學(xué)里勤工儉學(xué),成為了校內(nèi)奶茶店(消費區(qū)在戶外)的店長,為了減少高溫年帶來的損失,該同學(xué)現(xiàn)在有兩種方案選擇:方案一:不購買遮陽傘,一旦某年為高溫年,則預(yù)計當年的收入會減少6000元;方案二:購買一些遮陽傘,費用為5000元,可使用4年,一旦某年為高溫年,則預(yù)計當年的收入會增加1000.4年為期,試分析該同學(xué)是否應(yīng)該購買遮陽傘?

【答案】10.02722)應(yīng)該購買遮陽傘

【解析】

1)先求出某年為高溫年的概率為,再根據(jù),求出今后4年中,甲地至少有3年為高溫年的概率;

(2)求出兩種方案損失的收入的期望,再決定是否應(yīng)該購買遮陽傘.

解:(1)由題意知,某年為高溫年的概率為

設(shè)今后年中高溫年出現(xiàn)年,則

,

,

.

2)若選擇方案一,不購買遮陽傘,設(shè)今后年共損失元,

若選擇方案二,購買遮陽傘,設(shè)今后年共損失元,

()

,故該同學(xué)應(yīng)該購買遮陽傘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點,.

1)求證:平面;

2)若異面直線所成角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某度假酒店為了解會員對酒店的滿意度,從中抽取50名會員進行調(diào)查,把會員對酒店的“住宿滿意度”與“餐飲滿意度”都分為五個評分標準:1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計結(jié)果如下表(住宿滿意度為,餐飲滿意度為

(1)求“住宿滿意度”分數(shù)的平均數(shù);

(2)求“住宿滿意度”為3分時的5個“餐飲滿意度”人數(shù)的方差;

(3)為提高對酒店的滿意度,現(xiàn)從的會員中隨機抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,底面是梯形,,,為棱上一點.

(1)若點的中點,證明:平面.

(2) ,試確定的值使得二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當時,判斷函數(shù)的單調(diào)性;

(2)當有兩個極值點時,若的極大值小于整數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜三棱柱中,,,D的中點.

1)證明:平面平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中e是自然對數(shù)的底數(shù),a)在點處的切線方程是.

1)求函數(shù)的單調(diào)區(qū)間.

2)設(shè)函數(shù),若上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】騰飛中學(xué)學(xué)生積極參加科技創(chuàng)新大賽,在市級組織的大賽中屢創(chuàng)佳績.為了組織學(xué)生參加下一屆市級大賽,了解學(xué)生報名參加社會科學(xué)類比賽(以下稱為A類比賽)和自然科學(xué)類比賽(以下稱為B類比賽)的意向,校團委隨機調(diào)查了60名男生和40名女生調(diào)查結(jié)果如下:60名男生中,15名不準備參加比賽,5名準備參加A類比賽和B類比賽,剩余的男生有準備參加A類比賽,準備參加B類比賽,40名女生中,10名不準備參加比賽,25名準備參加A類比賽,5名準備參加B類比賽.

1)根據(jù)統(tǒng)計數(shù)據(jù),完成如2×2列聯(lián)表(A類比賽和B類比賽都參加的學(xué)生需重復(fù)統(tǒng)計):

A類比賽

B類比賽

總計

男生

女生

總計

2)能否有99%的把握認為學(xué)生參加A類比賽或B類比賽與性別有關(guān)?

附:K2.

PK2k

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們打印用的A4紙的長與寬的比約為,之所以是這個比值,是因為把紙張對折,得到的新紙的長與寬之比仍約為,紙張的形狀不變.已知圓柱的母線長小于底面圓的直徑長(如圖所示),它的軸截面ABCD為一張A4紙,若點E為上底面圓上弧AB的中點,則異面直線DEAB所成的角約為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案