【題目】我們打印用的A4紙的長(zhǎng)與寬的比約為,之所以是這個(gè)比值,是因?yàn)榘鸭垙垖?duì)折,得到的新紙的長(zhǎng)與寬之比仍約為,紙張的形狀不變.已知圓柱的母線長(zhǎng)小于底面圓的直徑長(zhǎng)(如圖所示),它的軸截面ABCD為一張A4紙,若點(diǎn)E為上底面圓上弧AB的中點(diǎn),則異面直線DE與AB所成的角約為( )
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年1月10日,中國(guó)工程院院士黃旭華和中國(guó)科學(xué)院院士曾慶存榮獲2019年度國(guó)家最高科學(xué)技術(shù)獎(jiǎng).曾慶存院士是國(guó)際數(shù)值天氣預(yù)報(bào)奠基人之一,他的算法是世界數(shù)值天氣預(yù)報(bào)核心技術(shù)的基礎(chǔ),在氣象預(yù)報(bào)中,過(guò)往的統(tǒng)計(jì)數(shù)據(jù)至關(guān)重要,如圖是根據(jù)甲地過(guò)去50年的氣象記錄所繪制的每年高溫天數(shù)(若某天氣溫達(dá)到35 ℃及以上,則稱之為高溫天)的頻率分布直方圖.若某年的高溫天達(dá)到15天及以上,則稱該年為高溫年,假設(shè)每年是否為高溫年相互獨(dú)立,以這50年中每年高溫天數(shù)的頻率作為今后每年是否為高溫年的概率.
(1)求今后4年中,甲地至少有3年為高溫年的概率.
(2)某同學(xué)在位于甲地的大學(xué)里勤工儉學(xué),成為了校內(nèi)奶茶店(消費(fèi)區(qū)在戶外)的店長(zhǎng),為了減少高溫年帶來(lái)的損失,該同學(xué)現(xiàn)在有兩種方案選擇:方案一:不購(gòu)買遮陽(yáng)傘,一旦某年為高溫年,則預(yù)計(jì)當(dāng)年的收入會(huì)減少6000元;方案二:購(gòu)買一些遮陽(yáng)傘,費(fèi)用為5000元,可使用4年,一旦某年為高溫年,則預(yù)計(jì)當(dāng)年的收入會(huì)增加1000元.以4年為期,試分析該同學(xué)是否應(yīng)該購(gòu)買遮陽(yáng)傘?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求;
(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將某公司200天的日銷售收入(單位:萬(wàn)元)統(tǒng)計(jì)如下表(1)所示,
日銷售收入 | ||||||
頻數(shù) | 12 | 28 | 36 | 54 | 50 | 20 |
頻率 |
表(1)
(1)完成上述頻率分布表,并估計(jì)公司這200天的日均銷售收入(同一組中的數(shù)據(jù)用該組所在區(qū)間的中點(diǎn)值代表);
(2)已知該公司2020年第一、二季度的日銷售收入如下表(2)所示,第三季度的日銷售收入及其頻率可用表(1)中的數(shù)據(jù)近似代替,且在2020年,當(dāng)公司日銷售收入為時(shí),員工的日績(jī)效為100元,當(dāng)公司日銷售收入為時(shí),員工的日績(jī)效為200元,當(dāng)公司日銷售收入為時(shí),員工的日績(jī)效為300元.以頻率估計(jì)概率.
①若在第三季度某員工的工作日中隨機(jī)抽取2天,記該員工2天的績(jī)效之和為,求的分布列以及數(shù)學(xué)期望;
②若每個(gè)員工每個(gè)季度的工作日為50天,估計(jì)2020年前三個(gè)季度每個(gè)員工獲得的績(jī)效的總額.
日銷售收入 | ||||||
頻率 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
表(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)滿足,則滿足條件的所形成的平面區(qū)域的面積為①________,的最大值為②________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,四點(diǎn),,,中恰有三個(gè)點(diǎn)在橢圓C上,左、右焦點(diǎn)分別為F1、F2.
(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不平行坐標(biāo)軸的直線l交橢圓于P、Q兩點(diǎn),若PQ的中點(diǎn)為N,O為原點(diǎn),直線ON交直線x=﹣3于點(diǎn)M,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.曲線的極坐標(biāo)方程為,曲線與曲線的交線為直線.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)直線與軸交于點(diǎn),與曲線相交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左焦點(diǎn),點(diǎn)在橢圓上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)經(jīng)過(guò)圓:上一動(dòng)點(diǎn)作橢圓的兩條切線,切點(diǎn)分別記為,,直線,分別與圓相交于異于點(diǎn)的,兩點(diǎn).
(i)當(dāng)直線,的斜率都存在時(shí),記直線,的斜率分別為,.求證:;
(ii)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com