5.在等比數(shù)列{an}中,若公比q=2,S3=7,則S6的值為( 。
A.56B.58C.63D.64

分析 由等比數(shù)列前n項和公式先求出a1,由此能求出S6的值.

解答 解:∵等比數(shù)列{an}中,公比q=2,S3=7,
∴${S}_{3}=\frac{{a}_{1}(1-{q}^{2})}{1-q}$=$\frac{{a}_{1}(1-8)}{1-2}$=7a1=7,
解得a1=1,
∴S6=$\frac{1-{2}^{6}}{1-2}$=63.
故選:C.

點評 本題考查數(shù)列的前6項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x+1)=x+2x2,求f(x)=2x2-3x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=4$\sqrt{x+1}$-x的值域為(-∞,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若a>0,b>2,且a+b=3,則使得$\frac{4}{a}$+$\frac{1}{b-2}$取得最小值的實數(shù)a=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校高一年級3個班有10名學(xué)生在全國英語能力大賽中獲獎,學(xué)生來源人數(shù)如表:
班別高一(1)班高一(2)班高一(3)班
人數(shù)361
若要求從10位同學(xué)中選出兩位同學(xué)介紹學(xué)習(xí)經(jīng)驗,設(shè)其中來自高一(1)班的人數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2C-3cos(A+B)=1
(1)求角C的大;
(2)若c=$\sqrt{6}$,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在正三棱柱A1B1C1-ABC中,AB=4,${A_1}A=4\sqrt{3}$,D,F(xiàn)分別是棱AB,AA1的中點,E為棱AC上的動點,則△DEF周長的最小值為$2\sqrt{7}+4$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.△ABC的外接圓的圓心為O,半徑為1,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$且$|{\overrightarrow{OA}}|=|{\overrightarrow{AB}}|$,則向量$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.畫出下列函數(shù)的圖象:
(1)F(x)=$\left\{{\begin{array}{l}{-2,({x≤0})}\\{1,({x>0})}\end{array}}$
(2)G(n)=3n+1,n∈{1,2,3}.

查看答案和解析>>

同步練習(xí)冊答案