13.若a>0,b>2,且a+b=3,則使得$\frac{4}{a}$+$\frac{1}{b-2}$取得最小值的實(shí)數(shù)a=$\frac{2}{3}$.

分析 構(gòu)造基本不等式的性質(zhì)即可求解.利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵a>0,b>2,且a+b=3,
∴a+b-2=1,
那么:($\frac{4}{a}$+$\frac{1}{b-2}$)[a+(b-2)]=4+1+($\frac{4(b-2)}{a}$+$\frac{a}{b-2}$)
≥5+2$\sqrt{\frac{4(b-2)}{a}×\frac{a}{b-2}}$=9,
當(dāng)且僅當(dāng)2(b-2)=a時(shí)即取等號(hào).
聯(lián)立$\left\{\begin{array}{l}{2(b-2)=a}\\{a+b=3}\end{array}\right.$,
解得:a=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查了構(gòu)造不等式的思想,利用“乘1法”與基本不等式的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦點(diǎn);
②以拋物線的焦點(diǎn)弦(過(guò)焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A、B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|-|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過(guò)定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知正實(shí)數(shù)a,b 滿足a+3b=7,則$\frac{1}{1+a}$+$\frac{4}{2+b}$ 的最小值為$\frac{13+4\sqrt{3}}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.定義在R上的函數(shù) y=f(x) 對(duì)任意的x,y∈R,滿足條件:f(x+y)=f(x)+f(y)-2,且當(dāng)x>0時(shí),f(x)>2
(1)求f(0)的值;
(2)證明:函數(shù)f(x)是R上的單調(diào)增函數(shù);
(3)解不等式f(2t2-t-3)-2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}2-y≥0\\ x-3y+2≤0\\ 4x-5y+2≥0\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F的直線交y軸于點(diǎn)N,交橢圓C于點(diǎn)A、P(P在第一象限),過(guò)點(diǎn)P作y軸的垂線交橢圓C于另外一點(diǎn)Q.若$\overrightarrow{NF}=2\overrightarrow{FP}$.
(1)設(shè)直線PF、QF的斜率分別為k、k',求證:$\frac{k}{k'}$為定值;
(2)若$\overrightarrow{AN}=\overrightarrow{FP}$且△APQ的面積為$\frac{{12\sqrt{15}}}{5}$,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在等比數(shù)列{an}中,若公比q=2,S3=7,則S6的值為( 。
A.56B.58C.63D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.平面向量$\vec a$與$\vec b$的夾角為$\frac{π}{3}$,$\vec a=(2,0),|{\vec b}|=1$,則$|{\vec a+2\vec b}|$等于(  )
A.2$\sqrt{3}$B.2$\sqrt{2}$C.4D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知y=f(x)是定義在R上的奇函數(shù),當(dāng)時(shí)x≥0,f(x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x)≥x+2.

查看答案和解析>>

同步練習(xí)冊(cè)答案