分析 (Ⅰ)通過中點坐標(biāo)公式及已知條件,可得x1=1-x2或x2=1-x1,利用對數(shù)的運(yùn)算性質(zhì)可得結(jié)論;
(Ⅱ)通過Sn中前后對應(yīng)位置的兩項相加即得結(jié)論.
解答 (Ⅰ)證明:設(shè)P點的坐標(biāo)為(x,y),
∵P是AB的中點,
∴$\frac{1}{2}$(x1+x2)=x=$\frac{1}{2}$,得x1+x2=1,
則x1=1-x2或x2=1-x1,
∴y=$\frac{1}{2}$(y1+y2)
=$\frac{1}{2}$[f(x1)+f(x2)]
=$\frac{1}{2}$($\frac{1}{2}$+log2$\frac{{x}_{1}}{1-{x}_{1}}$+$\frac{1}{2}$+$lo{g}_{2}\frac{{x}_{2}}{1-{x}_{2}}$)
=$\frac{1}{2}$(1+log2$\frac{{x}_{1}}{1-{x}_{1}}$+$\frac{1}{2}$+$lo{g}_{2}\frac{{x}_{2}}{1-{x}_{2}}$)
=$\frac{1}{2}$(1+log2$\frac{{x}_{1}}{1-{x}_{1}}$•$\frac{{x}_{2}}{1-{x}_{2}}$)
=$\frac{1}{2}$(1+log2$\frac{{x}_{1}•{x}_{2}}{{x}_{1}•{x}_{2}}$)
=$\frac{1}{2}$,
∴P點的縱坐標(biāo)為定值$\frac{1}{2}$;
(Ⅱ)解:由(Ⅰ)知x1+x2=1,f(x1)+f(x2)=y1+y2=1,
又∵Sn=$f(\frac{1}{n})+f(\frac{2}{n})+…+f(\frac{n-1}{n})$,
∴Sn=f($\frac{n-1}{n}$)+…+f($\frac{1}{n}$),
兩式相加,得2Sn=[f($\frac{1}{n}$)+f($\frac{n-1}{n}$)]+…+[f($\frac{n-1}{n}$)+f($\frac{1}{n}$)]
=$\underbrace{1+1+…+1}_{n-1}$=n-1,
∴Sn=$\frac{n-1}{2}$(n≥2,n∈N*).
點評 本題考查數(shù)列的求和,涉及到中點坐標(biāo)公式、對數(shù)的運(yùn)算性質(zhì)等知識,利用并項法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:2 | B. | 2:27 | C. | 1:3 | D. | 4:27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A62×A54種 | B. | A62×54種 | C. | C62×A54種 | D. | C62×54 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①④ | B. | ②③ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<-5或x>-2} | B. | {x|x≤-5或x≥-2} | C. | {x|x≤-3或x≥-1} | D. | {x|x<-3或x>-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com