精英家教網 > 高中數學 > 題目詳情

【題目】已知.

1)若恒成立,求實數a的取值范圍;

2)若關于x的方程有兩個不同的解,求實數a的取值范圍.

【答案】1;(2.

【解析】

1)利用等價轉化,求解的最大值即可;

2)把的解的情況等價轉化為有兩解,結合圖象變化趨勢可求.

1)因為.

x≤0時,fx≤0,gx)>0,fxgx)恒成立;

x0fxgx)恒成立等價為,

,即有

,

,

可得x0遞減,當x1時,,即,x1遞減;

0x1時,,即,0x1遞增,

x1處取得極大值,且為最大值1,,

所以.

2)若x≤0時,,無解;

x0時,恒成立等價為,

,即有有兩解,

,

由(1)可知x1處取得極大值,且為最大值1,

,,當,

可得0a1時,關于x的方程有兩個不同的解,

a的范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某生物探測器在水中逆流行進時,所消耗的能量為EcvnT,其中v為行進時相對于水的速度,T為行進時的時間(單位:h),c為常數,n為能量次級數,如果水的速度為4km/h,該生物探測器在水中逆流行進200km

1)求T關于v的函數關系式;

2)①當能量次級數為2時,求探測器消耗的最少能量;

②當能量次級數為3時,試確定v的大小,使該探測器消耗的能量最少.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊長分別為ab、c,且acosB+bcosA2ccosB

1)若a3,,求c的值;

2)若,求fA)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某互聯網公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量單位:萬元)和收益單位:萬元)的數據如下表

月份

廣告投入量

收益

他們分別用兩種模型①分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統計量的值

Ⅰ)根據殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;

Ⅱ)殘差絕對值大于的數據被認為是異常數據,需要剔除

。┨蕹惓祿笄蟪觯á瘢┲兴x模型的回歸方程;

ⅱ)若廣告投入量時,該模型收益的預報值是多少

附:對于一組數據,,……,,其回歸直線的斜率和截距的最小二乘估計分別為

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy.直線1的參數方程為t為參數).在以坐標原點為極點,x軸的非負半軸為極軸的極坐標系中.曲線C的極坐標方程為ρ2cosθ.

1)若曲線C關于直線l對稱,求a的值;

2)若A、B為曲線C上兩點.且∠AOB,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數學平均分數和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數學期末考試成績.

(1)現從甲班數學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;

(2)學校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

參考公式:,其中

參考數據:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩定點,,點是平面內的動點,且,記的軌跡是.

1)求曲線的方程;

2)過點引直線交曲線兩點,點關于軸的對稱點為,證明直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了了解高一新生是否愿意參加軍訓,隨機調查了80名新生,得到如下2×2列聯表

愿意

不愿意

合計

x

5

M

y

z

40

合計

N

25

80

1)寫出表中x,yz,MN的值,并判斷是否有99.9%的把握認為愿意參加軍訓與性別有關;

2)在被調查的不愿意參加軍訓的學生中,隨機抽出3人,記這3人中男生的人數為ξ,求ξ的分布列和數學期望.

參考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,直線與橢圓的兩交點間距離為.

1)求橢圓的方程;

2)如圖,設是橢圓上的一動點,由原點向圓引兩條切線,分別交橢圓于點,若直線的斜率均存在,并分別記為,求證:為定值.

3)在(2)的條件下,試問是否為定值?若是,求出該值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案