函數(shù)f(x)=
1-
1
2
log2x
的定義域為
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由1-
1
2
log
x
2
≥0,得:
log
x
2
≤2,解出x≤4且x>0,從而求出函數(shù)的定義域.
解答: 解:∵1-
1
2
log
x
2
≥0,
log
x
2
≤2,
∴x≤4且x>0,
故答案為:(0,4].
點評:本題考查了函數(shù)的定義域及其求法,考查了對數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-xlx,g(x)=f(x)-xf′(a).(其中f′(a)表示函數(shù)f(x)在x=a處的導(dǎo)數(shù),a為正常數(shù))
(Ⅰ)求g(x)的單調(diào)區(qū)間;
(Ⅱ)對任意的正實數(shù)x1x2,且x1<x2,證明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(Ⅲ)若對任意的n∈N*,且n≥3時,有l(wèi)n2•lnn≤ln(2+k)•ln(n-k),其中k=1,2,…n-2.求證:
1
ln2
+
1
ln3
+L+
1
lnn
1-f(n+1)
ln2•lnn
(n≥且n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點在軸x上的橢圓方程為
x2
a2
+y2=1(a>0),F(xiàn)1、F2是橢圓的兩個焦點,若橢圓上存在點B,使得∠F1BF2=
π
2
,那么實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足
3x-y-6≤0
x-y+2≥0
x+y≥3
,則目標(biāo)函數(shù)z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為極點的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=3
2
和ρsin2θ=8cosθ,直線l與曲線C交于點A、B,線段AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,a2=2且an+2-an=1+(-1)n(n∈N*),則S50=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,
π
2
),sin(α+
π
3
)=
3
5
,則cosα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0.5x>2,則實數(shù)x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
(ln2-1)2
=
 

查看答案和解析>>

同步練習(xí)冊答案