分析 a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}({n∈{N^*}})$,可得an+4=an,即可得出.
解答 解:∵a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}({n∈{N^*}})$,∴a2=$\frac{1+{a}_{1}}{1-{a}_{1}}$=$\frac{1+2}{1-2}$=-3,同理可得:a3=-$\frac{1}{2}$,a4=$\frac{1}{3}$,a5=2,…,
∴an+4=an,
則該數(shù)列的前2012項積a1•a2•…•a2011•a2012=$({a}_{1}{a}_{2}{a}_{3}{a}_{4})^{503}$=1,
故答案為:1.
點評 本題考查了數(shù)列的遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnx | 0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com