17.在平面直角坐標系xOy中,直線x+(m+1)y=2-m與直線mx+2y=-8互相垂直,則實數(shù)m=-$\frac{2}{3}$.

分析 由兩直線ax+by+c=0與mx+ny+d=0垂直?am+bn=0解得即可.

解答 解:直線x+(m+1)y=2-m與直線mx+2y=-8互相垂直
?m+2(m+1)=0
?m=-$\frac{2}{3}$.
故答案為:$-\frac{2}{3}$.

點評 本題主要考查兩直線垂直的條件,熟練掌握公式是解題的關(guān)鍵,本題是一道基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合M={x|x2-2x≤0},N={x|-2<x<1},則M∩N=(  )
A.(-2,1)B.[0,1)C.(1,2]D.(-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列四個函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是(  )
A.y=sinxB.y=cosxC.y=x2D.y=x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)y=sin(2x-$\frac{π}{6}$)的單調(diào)遞增區(qū)間是( 。
A.[-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z)B.[$\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ](k∈Z)
C.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)D.[$\frac{π}{6}$+kπ,$\frac{5π}{6}$+kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知平面內(nèi)三個向量$\overrightarrow a$=(1,-1),$\overrightarrow b$=(x,2),$\overrightarrow c$=(2,1),滿足$\overrightarrow a$∥(${\overrightarrow b$+$\overrightarrow c}$).
(Ⅰ)求實數(shù)x的值;
(Ⅱ)求$\overrightarrow c$在$\overrightarrow a$-$\overrightarrow b$上的投影.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知下列四個結(jié)論:
①函數(shù)y=|sin(x+$\frac{π}{6}$)|是偶函數(shù);
②函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象的一條對稱軸為x=$\frac{5}{12}$π;
③函數(shù)y=tan2x的圖象的一個對稱中心為($\frac{π}{4}$,0);
④若A+B=$\frac{π}{4}$,則(1+tanA)(1+tanB)=2.
其中正確的結(jié)論序號為②③④(把所有正確結(jié)論的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知空間四邊形ABCD如圖中,E、F、G、H分別為AB、BC、CD、DA的中點,且∠EFG=90°,判斷四邊形EFGH是什么圖形,為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若tanθ=-$\frac{1}{3}$,則cos2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,則f(4)=( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案