分析 由題意方程求得橢圓的參數(shù)方程,然后利用三角函數(shù)最值的求法得答案.
解答 解:由橢圓4x2+y2=4,得${x}^{2}+\frac{{y}^{2}}{4}=1$,
可設(shè)橢圓參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}\right.$,
∴x+y=2sinθ+cosθ=$\sqrt{5}(\frac{2\sqrt{5}}{5}sinθ+\frac{\sqrt{5}}{5}cosθ)$
=$\sqrt{5}sin(θ+φ)$(tanφ=$\frac{1}{2}$).
∴x+y的最大值為$\sqrt{5}$,x+y的最小值為-$\sqrt{5}$.
故答案為:$\sqrt{5}$,$-\sqrt{5}$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單幾何性質(zhì),考查了橢圓參數(shù)方程的應(yīng)用,訓(xùn)練了三角函數(shù)的最值的求法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,3) | C. | (0,1) | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | -2 | D. | 不存在 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com